
Seventh FRAMEWORK PROGRAMME
FP7-ICT-2007-2 - ICT-2007-1.6

New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT

Deliverable D4.3

Experimental evaluation of the machine
learning engine

Project description

Project acronym: ECODE
Project full title: Experimental Cognitive Distributed Engine
Grant Agreement no.: 223936

Document Properties

Title: Experimental evaluation of the machine learning engine
Responsible: IBBT
Editor(s): Wouter Tavernier (IBBT)
Dissemination level: Public (PU)
Date of preparation: Nov. 2011
Version: 0.1

List of authors

ALB Dimitri Papadimitriou

IBBT Bart Puype, Steven Latre, Wim Van de Meerssche, Dirk Deschrijver,
Wouter Tavernier

INRIA Chadi Barakat and Amir Krifa
LAAS Pedro Casas Hernandez, Johan Mazel, Philippe Owezarski
UCL Damien Saucez, Benoit Donnet, Olivier Bonaventure
ULg Guy Leduc

2

Executive summary

This deliverable (D4.3) reports on the results obtained from the experimental evaluation of the
designs specified in deliverable D2.3 from WP2. The structure of this document is split into
several use cases (7), resulting in a specific chapter for every case. These cases are representa-
tive of i) critical functions (intrusions/anomalies detection, accountability, etc.) that are either
not easily achievable or not achievable at all by classical means or ii) new functionality that
would otherwise not be realizable.

The first use case (a1) on adaptive sampling tackles the scalability issue of traffic mea-
surement due to high speed networks, rapidly changing network conditions and the problem
of missing meaningful information in the related network traffic. In this context, an adaptive
system is evaluated combining different existing sampling primitives in order to support a large
spectrum of monitoring tasks while providing the best possible accuracy. The system coordi-
nates responsibilities between the different monitors and shares resources between the different
sampling primitives. Experimental Results prove the ability of the system to keep the resulting
overhead around a target value. Compared to application-specific solutions, the system shows
its advantages in providing more accurate results.

The detection of distributed intrusions, attacks, and anomalies has been investigated in the
context of the use case (a3). As documented in deliverable D2.3, an unsupervised machine-
learning based system has been designed. The resulting NEWNADA system is composed of
three different modules: (i) a monitoring Multi-Resolution Change-Detection module, (ii) an
Unsupervised Machine-Learning based Analysis module, and (iii) a Characterization module.
The designed system is evaluated using real traffic traces containing different types and pat-
terns of network attacks, including DDoS, worms, and buffer-overflow attacks. By compar-
ison against three previously used approaches for unsupervised detection of network attacks
and anomalies (namely, DBSCAN-based, k-means-based, and PCA-based outliers detection),
the evaluation results obtained show strong evidences that the learning method underlying the
NEWNADA system is able to achieve high accuracy, even for attacks with unknown signatures,
at a reasonable computational cost.

A path availability and performance service (IDIPS) is proposed in use case (b1). Given a
list of source and destination addresses, and a ranking criterion, the IDIPS server determines all
the possible <source, destination> pairs and computes the cost of each path according to the
specified ranking criterion requested by the client. The corresponding chapter in this deliverable
evaluates the impact of the IDIPS service in the context of a XORP implementation for its
accuracy, stability and scalability properties.

The second part of use case (b1) investigates the idea of using a Network Coordinate Sys-
tem (NCS) to reduce the number of measurements needed between a given number of nodes
to estimate valuable network metrics (e.g., delays or available bandwidths) between all pairs of
nodes. The proposed DMFSGD-scheme uses Machine Learning, namely Stochastic Gradient

3

Descent (SGD), to find a low-rank approximation of the nxn distance matrix in a distributed
way. DMFSGD is tested on 3 real (measured) round-trip-times datasets and on one dynamic
dataset of available bandwidths. Its precision outperforms Vivaldi’s, which is the reference
NCS in the field. Moreover it has no coordinate drift problem, and can be used to estimate
both delay and bandwidth values (regression), as well as to estimate delay or bandwidth classes
(classification). In addition a novel method to find one-hop routing shortcuts between given
source-destination paths is evaluated. Results show that this method only needs a limited num-
ber of additional measurements for returning candidate relay nodes returning significant delay
gains in the resulting paths.

In use case (b2), the link failure history is used to identify Shared Risk Groups (SRGs)
from network element. Through clustering and data-mining of failure occurrences, a predic-
tive model is built, allowing inference of SRGs upon the detection of a first network element
failure. The improved link failure detection times resulting from the algorithm are evaluated
through measurements and compared to analytical estimations. The detection time decreases as
SRGs become larger, meaning that SRGs having a larger impact on the network performance
have a better chance at seeing (greater) improvement from the inference procedure. In addi-
tion, scalability results for SRG table size and computational complexity of the algorithm are
characterized.

The performance of using an automated way of configuring Loop-Free Alternate (LFA) en-
tries in a routing table is evaluated in the context of the second component of use case related
to network resiliency (b2). The use of Loop-Free Alternates avoids that large recovery times
are needed for routing tables before network traffic affected by an adjacent failure is recovered.
Performance evaluations show that the proposed technique, named ALFA, is able to cover al-
most 100 percent of potential link failures, while providing an automated way of configuring
these entries.

The use case (b3) on profile-based accountability involves machine learning techniques in
order to detect (and the possibly penalize): i) TCP receivers who deliberately ignore TCP con-
gestion feedback to willingly achieve an advantage in throughput (misbehaving receivers), and
ii) TCP sender who react differently to TCP congestion feedback than is generally expected
(unresponsive senders). Both the accuracy of the detection algorithm and the achieved fairness
gain of the overall accountability mechanism are evaluated. Several approaches are evaluated
to find a good attribute set that (i) is able to distinguish between different TCP stacks known to
have different levels of aggressiveness and thus lead to significant throughput differences (for
example, an Additive Increase Multiplicative Decrease (AIMD) TCP stack such as CUBIC is
designed to be less aggressive in increasing the throughput than a Multiplicative Increase Mul-
tiplicative Decrease (MIMD) TCP stack such as Scalable TCP), and (ii) does not distinguish
between these stacks when there is not a difference in throughput or if the throughput differ-
ence is not due to the difference in aggressiveness but due to other factors such as the existence
of a bottleneck. While tens of attribute sets were considered, this deliverable focuses on the best
4 candidates found so far: a mapping on a statistical distribution, a distribution of increments,
the auto-covariance and a translation to the frequency domain. It is illustrated that these at-
tribute sets show promising results in achieving the desired accuracy of detection and resulting
fairness in throughput. However, at the same time the techniques are still prone to parameter
fluctuations.

Overall, the experimentation of the learning modules by means of the machine learning
engine has been successfully conducted by means of the ECODE Unified Architecture (EUA)

4

proposed in deliverable D2.2. Indeed, the experimental results obtained show that such a plat-
form can host different learning modules performing different learning tasks.

5

Contents

1 Introduction 15

2 Adaptive sampling 17
2.1 Introduction . 17
2.2 Methodology . 17

2.2.1 Experimental Platform . 18
2.2.2 Scenario Description . 18

2.3 Scalability . 19
2.4 Timing . 20
2.5 Conclusion . 22

3 Cooperative intrusion and attack / anomaly detection 23
3.1 Introduction . 23
3.2 Methodology . 24
3.3 Detecting Attacks in WIDE and METROSEC real traffic 25
3.4 Detecting Attacks in KDD99 artificial traffic 27
3.5 Computational Time and Parallelization . 29

4 ISP-Driven Informed Path Selection 33
4.1 Introduction . 33
4.2 Accuracy . 33
4.3 Stability . 35
4.4 Scalability . 35

5 Path availability and coordinate system 39
5.1 Network Distance Prediction by Decentralized Matrix Factorization 39

5.1.1 Evaluation Methodology . 40
5.1.2 Euclidean Embedding vs. Matrix Factorization 41
5.1.3 Impacts of Parameters . 43
5.1.4 Comparisons with Vivaldi . 46

5.2 Finding routing shortcuts . 48
5.2.1 Problem Formalization . 48
5.2.2 Experimentation and evaluation . 48
5.2.3 Conclusion . 52

6

6 OSPF SRG inference 53
6.1 Conditional probabilities . 53
6.2 Failure detection and accuracy . 57
6.3 Recovery timing . 58
6.4 Scaling of detection times . 60
6.5 Scalability of the SRG table . 65
6.6 Scalability of multiple failure inference . 66

7 Automated Learning of Loop-Free Alternate Paths for Fast Re-Routing 68
7.1 Introduction . 68
7.2 Related work . 69

7.2.1 Equal cost multi-paths (ECMP) . 69
7.2.2 Loop-free alternate (LFA) paths . 69
7.2.3 Multi-hop repair paths . 70

7.3 Automated learning of Loop-Free Alternates 71
7.3.1 Assumptions . 71
7.3.2 Preliminaries . 71
7.3.3 Steps and mechanisms . 72
7.3.4 Router Model . 73
7.3.5 Cycle-free alternate path computation 74
7.3.6 Loop-domain detection using BFS+ 74
7.3.7 Configuration of path to LFN . 75

7.4 Experimentation . 75
7.4.1 Environment . 75
7.4.2 Network topologies . 76
7.4.3 Experimented techniques . 77
7.4.4 Experimental results . 77

7.5 Conclusion . 79

8 Profile-based accountability 80
8.1 Introduction . 80
8.2 Related work . 82
8.3 Misbehaving receivers . 83

8.3.1 Problem statement . 84
8.3.2 Limited connection set . 86
8.3.3 Scenario generation environment . 88
8.3.4 Detecting unresponsive connections 91
8.3.5 Penalization of unresponsive connections 96
8.3.6 Performance evaluation results . 97
8.3.7 Conclusions . 104

8.4 Unresponsive senders . 105
8.4.1 Experimental setup . 105
8.4.2 Results description . 109

8.5 Conclusions . 119

9 Conclusion 120

7

A Path availability and coordinate system 124
A.1 Network Distance Prediction by Decentralized Matrix Factorization 125

A.1.1 Introduction . 125
A.1.2 Related Work . 127
A.1.3 Network Distance Prediction by Matrix Factorization 128
A.1.4 Decentralized Matrix Factorization for Network Distance Prediction . . 131
A.1.5 Extended Matrix Factorization Models 135
A.1.6 Conclusions . 138

A.2 Finding routing shortcuts . 138
A.2.1 Problem Formalization . 138
A.2.2 Implementation . 140
A.2.3 Conclusion . 142

8

Acronyms

ADC Approximation Detection Criterion

AIMD Additive Increase, Multiplicative Decrease

ALFA Automated Loop-Free Alternates

AS Autonomous System

AQM Active Queue Management

CDF Cumulative Distribution Function

CWR Congestion Window Reduced

DDoS Distributed Denial-of-Service

DMFSG Decentralized Matrix Factorization-based on Stochastic Gradient Descent

DoS Denial-of-Service

ECE ECN Echo

ECN Early Congestion Notification

EDC Estimation Detection Criterion

EUA ECODE Unified Architecture

FIB Forwarding Information Base

FRR Fast-ReRoute

LFN Loop-Free Node

HDC Hybrid Detection Criterion

IDIPS ISP-Driven Informed Path Selection

LFA Loop-Free Alternate

LOF Local Outlier Factor

LSA Link State Advertisement

9

MDS MultiDimensional Scaling

MIMD Multiplicative Increase, Multiplicative Decrease

NADA Network Anomaly Detection Algorithm

NCS Network Coordinate System

OSPF Open Shortest Path First

PCA Principal Component Analysis

RED Random Early Detection

RIB Routing Information Base

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SRG Shared Risk Group

SVD Singular Value Decomposition

TIV Triangle Inequality Violation

XORP eXtensible Open Routing Platform

XRL XORP Resource Locator

10

List of Figures

2.1 Experimental platform . 18
2.2 Average mean relative error vs. Target overhead (T O) for three applications:

Our approach vs. two application-specific approaches. 20
2.3 Resulting overhead vs. time using two time scales to track traffic variations . . 22

3.1 Testbed for evaluation of NEWNADA in XORP. 24
3.2 True Positives Rate vs False Alarms in WIDE and METROSection 26
3.3 True Positives Rate vs False Alarms in KDD99. 27
3.4 NEWNADA vs Misuse-based NIDS in KDD99. 28
3.5 NEWNADA vs Misuse-based NIDS - R2L, DoS, U2R, and Probing attacks. . . 31
3.6 Computational Time as a function of number of features and number of macro-

flows to analyze. The number of aggregated macro-flows in (a) is n = 10000.
The number of features and slices in (b) is m = 20 and M = 190 respectively. . 32

4.1 Delay precision comparison between standard UDP ping, ICMP ping and XORP
UDP ping . 34

4.2 IDIPS service time as perceived by the client 36
4.3 Proportion of the service time split - median over the ten runs 37
4.4 Load on IDIPS without XRL . 38

5.1 Comparison of MDS-based Euclidean embedding and SVD-based matrix fac-
torization on synthetic1000, P2psim525 and Meridian2255. The stresses and
the median absolute errors by both methods in different dimensions/ranks are
shown on the first two rows respectively. Note that a perfect embedding with no
errors was generated for Synthetic1000 in the 10 dimensional Euclidean space
by MDS. 42

5.2 Impact of parameters. 45
5.3 Impact of η under λ = 1 and r = 10 with the L1 loss function and the non-

negativity constraint. k is treated as 226 for Harvard226 and k= 32 for P2PSim1740
and Meridian2500. 46

5.4 Comparison of DMFSGD and Vivaldi. The default configuration of λ = 1 and
r = 10 with η adapted by the line search, the L1 loss function and the non-
negativity constraint is used in DMFSGD and DMFSGD Landmark. The 10
dimensional Euclidean space with the Height model is used in Vivaldi and Har-
vard Vivaldi. Note that as the implementation of Harvard Vivaldi only outputs
the results in the end of the simulation, the final stress and the final MAE are
plotted as a constant. 47

11

5.5 Comparison of EDC and ADC: Difference of Gr between the best shortcut and
the best detected shortcut. 50

5.6 Comparison of ADC and HDC: Difference of Gr between the best shortcut and
the best detected shortcut. 51

6.1 Outline of SRG table . 54
6.2 HELLO based failure detection . 58
6.3 Proof-of-concept demonstration screenshot 59
6.4 Packet traces . 60
6.5 Packet traces, detail for learned convergence, local detection 61
6.6 Detection time Delta . 62
6.7 Detection time ∆n for larger SRGs (n elements) 64

7.1 Interface-specific forwarding . 73
7.2 The probing process . 76
7.3 Average performance vs. topology . 78

8.1 Overview of the role of a cognitive mechanism on top of an existing AQM
system to introduce a higher level of fairness. Individual TCP connections are
monitored to detect unresponsive TCP stacks, which can then be penalized to
favor the responsive TCP stacks. 81

8.2 Average measured throughput for 4 responsive connections and 1 unresponsive
connection. A new unresponsive connection is started every 6 minutes for 4
minutes leading to a starvation of responsive connections during that period. . . 86

8.3 Achieved gain of being unresponsive when compared to responsive connec-
tions. Three situations are considered: 30% connections ignoring all ECN mes-
sages (Ignore100), 30% of the connections adaptively ignoring ECN messages
(Adaptive Ignore) and 1 single AdaptiveIgnore connection. 88

8.4 Used network topology for all experiments: the type of client terminals are
varied in the different experiments. Clients are assumed to request the download
of a content item (e.g., video file) which is then sent from server to, possibly
unresponsive, clients. 89

8.5 Comparison between several attribute candidates to base the clustering on. Both
attribute sets cluster the data into two distinct groups, but only the average CWR
and ECE count make the distinction between responsive and unresponsive con-
nections. 92

8.6 Overview of the detection algorithm and penalization component. 92
8.7 Graphical overview of an illustrative outlier calculation for a group of 6 in-

stances (a) and 5 instances (b). As k is set to 5, only the group of 5 instances is
identified as outliers. 95

8.8 True positives and true negatives as a function over the time for different unre-
sponsive connection types. Overall, the accuracy is always more than 90% and
converges to an accuracy of 100% over time. The number of false positives is
considerably lower than the number of false negatives. 98

8.9 ROC Curve for the false negatives as a function of the share of unresponsive
connections. The more unresponsive connections are present in the network,
the higher the resulting accuracy is. 99

12

8.10 ROC Curve for the false negatives and false positives as a function of the level
of unresponsiveness. The level of unresponsiveness is varied by changing the
ratio of ECN messages that are ignored. 101

8.11 Influence of the penalization on the scenario described in Figure 8.2, represent-
ing four responsive connections and one unresponsive connection. By applying
penalization to the unresponsive connection, the unfair throughput of the un-
responsive connection is immediately decreased, leading to an almost perfect
fairness level. 102

8.12 Gain in terms of measured bandwidth of unresponsive connections versus re-
sponsive connections over time, with and without penalization of unresponsive
connections. The penalization is turned on after 100 seconds. Applying penal-
ization limits the gain of unresponsive connections. 103

8.13 Influence of the level of unresponsiveness on the gain unresponsive connections
achieve, with and without penalization of unresponsive connections. 104

8.14 Example virtual network . 106
8.15 Example physical network setup . 107
8.16 Box and whisker diagram for the different FP rates for CUBIC and Scalable TCP.110
8.17 Box and whisker diagram for the different CP rates for CUBIC and Scalable TCP.111
8.18 Median and mean FP rate vs. CG rate. 111
8.19 Box and whisker diagram for the different FP rates of CUBIC TCP and Scalable

TCP. In this case, an additional bottleneck has been placed on the server, which
diminishes the differences in unresponsiveness between the connections. 112

8.20 Median and mean FP rate vs CG rate. 113
8.21 Histogram and cumulative distribution functions. 115
8.22 Box and whisker diagrams for FP increments (without server bottleneck). . . . 117
8.23 Box and whisker diagrams for FP increments (with server bottleneck). 118
8.24 Auto-covariance CFP versus CCP with and without server bottleneck. 118

A.1 Euclidean Embedding. 127
A.2 Matrix Factorization. Note that the diagonal entries of D and D̂ are empty. . . . 128
A.3 The singular values of a RTT matrix of 2255×2255, extracted from the Merid-

ian dataset [117] and called “Meridian2255”, and of a RTT matrix of 525×525,
extracted from the P2psim dataset [9] and called “P2psim525”. The singular
values are normalized so that the largest singular values of both matrices are
equal to 1. 130

A.4 Architectures of landmark-based, the left plot, and decentralized, the right plot,
systems for network distance prediction. The squares are landmarks and the
circles are ordinary nodes. The directed path from node i to node j means that
node i probes node j and therefore wi j = 1. 132

13

List of Tables

2.1 Summary of assigned weights and experimental results for a selection of scenarios 21
2.2 Average sampling rate values and reported NetFlow records for a selection of

scenarios . 21

3.1 Signatures generated by NEWNADA in the detection of a SYN Network SCAN
attack, a SYN DDoS attack, and an ICMP flooding attack. 25

5.1 Properties of The Datasets . 41
5.2 Matrix Factorization vs. Euclidean Embedding 43
5.3 Criteria shortcut detection results . 49

6.1 HELLO based failure detection times . 58

7.1 Network topologies . 76

8.1 True negatives rate, with and without the detection of outliers, and true positives
rate for a varying share of unresponsive connections and unresponsive types. . . 100

8.2 Fitting results . 114
8.3 Goodness of fit statistics (Log-Logistic 3P) 116

14

Chapter 1

Introduction

The overall goal of the ECODE project is the application of machine learning techniques in
different network contexts leading to the design and experimentation of a distributed cognitive
engine. WP2 took in charge the specification of the cognitive network and system architecture
as well as the design of the cognitive engine. WP3 has detailed the experimental uses cases and
related network contexts on which the project focuses together with corresponding machine
learning methods and techniques they involve. The task of WP4 is to experiment the resulting
design for the identified use cases. This document (D4.3) reports on the experimental evaluation
of the machine learning engine by means of representative use cases and execution scenarios.

• (a1) Adaptive sampling

• (a3) Cooperative intrusion and attack / anomaly detection

• (b1) Path availability

– ISP-Driven Informed Path Selection (IDIPS)

– Path availability and coordinate systems

• (b2) Network resilience

– OSPF SRG inference

– Automated Learning of Loop-Free Alternate paths for fast-rerouting

• (b3) Profile-based accountability

The low-level design specification of machine learning functionality in order to successfully
handle the above objectives has been documented in deliverable D2.3. The resulting architecture
consists of the specification of interfaces and components that would allow implementation of
interoperable parts by third-party developers. The driver among the resulting specifications
was the XORP open source routing platform. XORP provides a fully featured control plane
platform that implements routing protocols and a unified platform to configure them. XORP’s
modular architecture allows rapid introduction of new protocols, features and functionality.
The developed prototypes are implemented on top of the ECODE Unified Architecture (EUA)
whose design is specified in deliverable D2.2. The latter is a distributed XORP extension.

15

The rest of this document devotes a chapter to the evaluation of every mentioned use case.
At the end of the document some the resulting expertise coming out of these evaluations is
shortly described in the concluding chapter 9.

16

Chapter 2

Adaptive sampling

2.1 Introduction
In Deliverable D2.3, we present the architecture of a cognitive centralized system able to achieve
concurrent monitoring tasks while offering the best possible accuracy at limited monitoring
overhead. The proposed system deals with multiple monitoring objectives (e.g., flow size es-
timation, heavy hitter detection, flow counting) and determine how to combine independent
measurements collected across the network using different sampling primitives and different
monitoring tools. The system also coordinates the responsibilities across the different monitors
and shares efficiently the resources between the different sampling primitives. The objective
function of the system is to maximize the global measurement accuracy under resource con-
straints on the sampling rate and the volume of traffic collected, i.e., measurement overhead,
from routers. A major property of the system is to automatically adapt to traffic variations and
network conditions.

An adaptive sampling system is scalable by definition in terms of traffic growth. Our system
will ensure the sampling rates inside routers are optimally chosen, both spatially and temporally,
so that the overhead of measurements is limited. Our system is also scalable in terms of number
of monitoring tasks and network topology. A new measurement task is simply a new function
to calculate over the traffic and to add to the objective function to optimize (linear increase
of complexity). As for the scalability in terms of topology, it is granted given the distributed
nature of the measurements. Only the processing is centralized, each router is instructed about
the sampling rate to use, and it then performs measurements and aggregation in flows, before
sending reports about them to the central unit. To determine the scalability of the system, we
thus observe the accuracy of the sampled measurements. We also determine how accurately the
system reacts to network and traffic changes (i.e., the timing).

2.2 Methodology
In order to evaluate the performance of our system, we developed an associated experimental
platform Monlab [66]. The main features of this platform are: (i) it is fed by real traffic captured
on a transit link then spread and played over an emulated network topology, (ii) it includes real
NetFlow-like tool for traffic monitoring on all router interfaces of the emulated topology, and
(iii) it implements the central processing unit.

17

Figure 2.1: Experimental platform

As shown in Figure 2.1, our experimental platform comprises three services: (i) the traffic
emulation service responsible for the generation of the emulated traffic between network routers
(that can be either virtual nodes connected by virtual links, or real routers connected by real
links), (ii) the traffic monitoring and sampling service, which implements packet sampling and
flow monitoring a la NetFlow on each router interface, and (iii) the data collection and analysis
service, a centralized service that collects NetFlow records, correlates them to better estimate
network traffic, and then runs our adaptive algorithm to decide on which sampling rates to
update. The third service mainly relies on the Flowd tool for the SoftFlowd package [8], an
open source free software capable of NetFlow measurements in high speed networks.

2.2.1 Experimental Platform
SoftFlowd requires network traffic in the TcpDump format. Unfortunately, obtaining real traffic
data from an entire backbone network is a hard issue. To cope with, we proceed in the following
way. We first seek unsampled packet traces collected on high speed transit links. We consider
for this study the ones coming from the Japanese MAWI project [4]. We parse the traces for the
IP prefixes, and we dispatch them over the Autonomous Systems (AS) connected to the edge
routers of the emulated topology. The dispatching is performed randomly according to some
predefined weights that determine the importance of each stub AS. Our system allows to define
the length of the prefix as a function of the granularity of the dispatching we want to achieve.
For this deliverable, we consider the /16 prefix as the unit for IP address assignment to ASes.
Once addresses are allocated, the packets in the TcpDump trace are split accordingly between
the different ASes connected to the emulated topology. Shortest routes are calculated. Then
packets in the TcpDump trace are associated to the different monitors over their respective paths
across the network with the correct timestamps derived from the trace. SoftFlowd samples then
packets, form flows and send them back to the central collector. This sampling and monitoring
is done in parallel on all network router interfaces.

2.2.2 Scenario Description
Our platform requires the definition of a network topology over which it dispatches and replays
real traffic. We conduct our experiments on topologies similar to Geant [1]. We set the weights
of AS’s needed for traffic dispatching according to the size of stub AS’s in Geant and we make
sure these weights sum to 1. An AS weighted with value w is assigned 100.w% of the prefixes
available in the trace and will see its traffic (incoming or outgoing) being around 100.w% of the

18

total traffic, both at the flow and packet levels (random prefix allocation). Once topology and
weights are set, TcpDump traces coming from [4] are replayed. Each platform service runs on
a dedicated machine. In order to initialize the different estimators, we run a first computation
without sampling on target applications: flow counting, flow size estimation and heavy hitter
detection. The objective is to minimize the weighted normalized estimation error.

2.3 Scalability
The concept of adaptive sampling is scalable by definition as the system automatically adapts
itself to the resource constraints. As stated before, the system is also scalable in terms of number
of monitoring tasks and network topology. The fundamental question is thus not to determine
the scalability itself but rather the accuracy with which the system can adapt the configuration
of routers monitors to the predefined resource limitations. For this purpose, we show in this
section the practical benefits of deploying our system by comparing it to application-specific
sampling systems. Second, we evaluate the efficiency of our adaptive solution in limiting the
overhead and minimizing the estimation error for the considered monitoring applications. We
refer the reader to deliverable D2.3 for technical details about the system architecture and its
parameters.

For this experiment, we set the timer d for updating sampling rates to 5 minutes, the time
scale β to 3600s, the minimum possible sampling rate SRmin to 0.0005 and the maximum pos-
sible one SRmax to 1. The T O is set to 200 NetFlow-records/s. We compare the performance
of the Flow counting (FC), Flow Size (FS), and Heavy Hitter (HH) monitoring applications ob-
tained with the proposed joint method and compare its performance with the two application-
specific primitives when used separately, i.e., packet sampling and flow sampling primitive. In
Figure 2.2, we plot the average mean relative error for three specific monitoring applications.
We plot in Figure 2.2(d) the global accuracy defined as the global weighted accuracy. This
figure shows that our solution provides the best global accuracy for the different monitoring
applications. It combines measurements of the different monitoring primitives to improve the
accuracy of the global estimator. As we can see in this figure, in order to reach similar global
accuracy to our joint method using application-specific primitive, one has to use a T O value
larger than 150% of the value used by the method we propose. In fact, each primitive focuses on
achieving a specific application. Therefore, while the use of a single primitive allows improving
results for its specific monitoring application, it provides inaccurate results for the other moni-
toring applications. These results are illustrated in figures 2.2(a),2.2(b) and 2.2(c). We observe
that each primitive provides accurate measurements for its specific application and less accurate
results for the other applications. For instance, packet sampling primitive improves accuracy of
FS (Flow Size) and HH (Heavy Hitter) applications while it provides a large estimation error for
FC (Flow Counting) application. On the other hand, flow sampling primitive improves results
of FC application and provides less accurate results for FS and HH applications. We notice
that our solution based on combining results of the different monitoring primitives improves
accuracy of the different applications especially when the value of T O is small. In this case,
sampling rate values are low and each single primitive provides inaccurate results. We can thus
combine their measurements in order to improve the global accuracy. Hence, using our solution
based on combining different sampling primitive measurements, allows not only optimizing
resource consumption but also improving the global accuracy as well as the accuracy of each

19

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(a) Flow counting

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(b) Flow size estimation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(c) Heavy hitter detection

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(d) Global accuracy

Figure 2.2: Average mean relative error vs. Target overhead (T O) for three applications: Our
approach vs. two application-specific approaches.

specific monitoring application. Furthermore, these figures also show the large impact of the
monitoring constraint (T O) on measurement accuracies. We observe in particular the clear
reduction of estimation errors when increasing the value of T O .

2.4 Timing
In this section, we evaluate the impact of the weights used in the global utility function on the
behavior of our system. The parameters of experiments are set as in Sec. 2.3. We run three
scenarios while changing each time the assigned weight value to each monitoring application.
We measure periodically the mean relative error. Then, we consider the average over all these
values measured during the experiment. Table 2.1 and 2.2 present a summary of experimental
results for a selection of scenarios. We notice that assigned weights have an impact on the
behavior of our system. We observe from Table 2.1 that increasing the weight value assigned to
a given monitoring application allows reducing the average mean relative error (AMRE) of its
measurement.

Consider the following experiments: in a first scenario (SC1), the operator assigns equal
weights to the different tasks (0.33). In order to validate our system, we run again the same
experiment in SC2 while increasing the weight assigned to the FC application from 0.33 to
0.5. From Table 2.1, we see that the error of FC application is reduced from 0.1045 to 0.0738.
In fact, by increasing the weight assigned to FC application the system finds automatically the
new best configuration that minimizes the global error while meeting the monitoring constraints
(T O). In Table 2.2 we observe that the new average sampling rate value for the flow sampling

20

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
as

si
gn

ed
w

ei
gh

ts
an

d
ex

pe
ri

m
en

ta
lr

es
ul

ts
fo

ra
se

le
ct

io
n

of
sc

en
ar

io
s

Sc
en

ar
io

Fl
ow

co
un

tin
g

Fl
ow

si
ze

es
tim

at
io

n
H

ea
vy

hi
tte

rd
et

ec
tio

n
G

lo
ba

la
cc

ur
ac

y
as

si
gn

ed
w

ei
gh

t
A

M
R

E
as

si
gn

ed
w

ei
gh

t
A

M
R

E
as

si
gn

ed
w

ei
gh

t
A

M
R

E
SC

1
0.

33
3

0.
10

45
0.

33
3

0.
08

34
0.

33
3

0.
06

74
5

0.
08

51
1

SC
2

0.
5

0.
07

38
0.

25
0.

16
4

0.
25

0.
08

65
0.

09
95

2
SC

3
0.

5
0.

08
89

0.
5

0.
11

4
-

-
0.

10
14

Ta
bl

e
2.

2:
A

ve
ra

ge
sa

m
pl

in
g

ra
te

va
lu

es
an

d
re

po
rt

ed
N

et
Fl

ow
re

co
rd

s
fo

ra
se

le
ct

io
n

of
sc

en
ar

io
s

Sc
en

ar
io

Fl
ow

Sa
m

pl
in

g
Pa

ck
et

Sa
m

pl
in

g
A

ve
ra

ge
sa

m
pl

in
g

Pe
rc

en
ta

ge
of

re
po

rt
ed

A
ve

ra
ge

sa
m

pl
in

g
Pe

rc
en

ta
ge

of
re

po
rt

ed
ra

te
va

lu
e

N
et

Fl
ow

re
co

rd
s

ra
te

va
lu

e
N

et
Fl

ow
re

co
rd

s
SC

1
0.

01
6

39
.6

5%
0.

31
4

60
.3

5%
SC

2
0.

02
87

62
.8

4%
0.

19
7

37
.1

6%
SC

3
0.

03
61

3
58

.2
3%

0.
02

3
41

.7
7%

21

primitive increases from 0.016 to 0.0287 together with an increase of the sampled flows
percentage (reported Netflow record for flow sampling primitive) from 39,65% to 62,84%.
Hence, for a set of applications with their corresponding weights, our system finds the best
monitors configuration that optimizes the global accuracy while meeting monitoring constraints.
This result is illustrated in SC3. We assign the same weight (0.5) to FC application and we use
only two applications instead of three. We observe in Table 2.1 that the system finds a new
optimal configuration for this new set of applications and their assigned weights.

 260

 280

 300

 320

 340

 6 8 10 12 14 16

O
v
e
r
h
e
a
d

(
N
e
t
F
l
o
w
/
s
)

Time (Hour)

Target overhead (TO)
time scale = 5400s
time scale = 600s

Figure 2.3: Resulting overhead vs. time using two time scales to track traffic variations

In order to evaluate the performance of the overhead prediction method, we plot in figure
2.3 the evolution of the measured overhead (exported NetFlow records) over time. We observe
that the system maintains the overhead around T O for the two time scale values. In fact, the
system tries to profit from the available resources in order to provide the best possible accuracy.
However, using a small time scale (τ = 600s) leads to an oscillating behavior of the overhead
since the system tracks more details and traffic variations. Instead, tracking changes on a large
scale (τ = 5400s) leads to a stable behavior of the overhead as the system avoids some details
and traffic variations specific to one observation period.

2.5 Conclusion
We have presented an adaptive system that combines different existing sampling primitives in
order to support a large spectrum of monitoring tasks while providing the best possible accuracy.
Our system coordinates responsibilities between the different monitors and shares resources be-
tween the different sampling primitives. Experimental Results proved the ability of our system
to keep the resulting overhead around a target value. Compared to application-specific solu-
tions, our system has shown its advantages in providing more accurate results especially for
low values of T O . Our system is practical and provides a flexible optimization method based
on overhead prediction that reconfigures monitors according to monitoring applications require-
ments and network conditions.

22

Chapter 3

Cooperative intrusion and attack /
anomaly detection

3.1 Introduction
The Unsupervised Network Anomaly Detection Algorithm (NEWNADA) is an unsupervised
machine-learning based system conceived to meet the objective of automatic detection and
characterization of intrusions and attacks/anomalies within ECODE. NEWNADA comprises
three different modules: (i) a monitoring Multi-Resolution Change-Detection module, (ii) an
Unsupervised Machine-Learning based Analysis module, and (iii) a Characterization module.
Deliverable D2.3 describes the architecture and the interaction between these three modules as
well as the implementation of these modules within the ECODE Unified Architecture (EUA).
This chapter provides some evaluations of NEWNADA with real traffic containing different
types of network attacks, including DDoS, worms, and buffer-overflow attacks.

NEWNADA is a traffic analysis system that permits to identify previously unknown anoma-
lous traffic behaviors without relying on signatures or calibration. The system permits to rank
the degree of abnormality of a set of traffic flows going through a monitored network link. In
addition, NEWNADA provides a summary of the most relevant traffic descriptors that charac-
terize the top-ranked flows in the form of anomalous traffic signatures. Such signatures permit
to automatically separate the interesting traffic events from the normal-operation traffic, thus
significantly simplifying network monitoring tasks. The information provided by NEWNADA
permits not only to detect and identify anomalous traffic flows, but also to rapidly understand
the nature of the anomaly and therefore to rapidly apply accurate and adapted counter-measures.

In this Chapter, we evaluate the performance of NEWNADA’s implementation, using both
real and artificial network traffic. The methodology and the testbed used for the evaluation are
described in Section 3.2. Section 3.3 evaluates NEWNADA by replaying real traffic traces from
the WIDE network [29]. The WIDE operational network provides interconnection between dif-
ferent research institutions in Japan, as well as connection to different commercial ISPs and
universities in the US. Traffic consists of 15 minutes-long raw packet traces daily collected for
the last ten years. The traces we shall work with consist of traffic from one of the transpacific
links between Japan and the United States. WIDE traces are not labeled, but some previous
work on anomaly detection has been performed using them [35, 41]. In particular, [41] detects
network attacks using a signature-based approach while [35] detects both attacks and anoma-
lous flows using non-Gaussian modeling. We shall therefore refer to the combination of results

23

NewNADA

XORP

Node A

Node B

Node C

MP MLP

Figure 3.1: Testbed for evaluation of NEWNADA in XORP.

obtained in both papers as our ground truth for WIDE traffic. In this section, we also evaluate
the NEWNADA’s performance for the detection of flooding attacks in replayed traffic traces
obtained from the METROSEC project [5]. These traces consist of real traffic collected on the
French RENATER network, containing simulated attacks performed with well-known DDoS
attack tools. Traces were collected between year 2004 and 2006, and contain DDoS attacks that
range from very low intensity (i.e., less than 4% of the overall traffic volume) to massive attacks
(i.e., more than 80% of the overall traffic volume). In addition, we compare the performance
of NEWNADA against some previous methods for unsupervised anomaly detection. In Section
3.4 we evaluate the ability of NEWNADA to detect network attacks in the well-known and
widely used KDD99 network attacks dataset [7]. In this case, the analysis is performed off-line
because the main interest of this evaluation is to show that NEWNADA can detect other kinds
of attacks when considering other types of traffic descriptors. In this section, we also compare
NEWNADA performance with those obtained by an extensively investigated signatures-based
NIDS based on decision trees. Decision trees permit to construct comprehensive signatures for
network attacks in the form of multiple filtering-rules, using a graph structure. This compari-
son permits to prove the advantage of using Unsupervised Analysis techniques like those used
in NEWNADA when discovering unknown attacks. Finally, Section 3.5 evaluates the com-
putational time of NEWNADA by taking into account the possibility of parallelization of the
Unsupervised Analysis module in a future implementation.

3.2 Methodology
In order to evaluate the implementation of NEWNADA in XORP, we replay real traffic traces
from WIDE and METROSEC in the simple testbed depicted in Figure 3.1, using TCPReplay
[6]. TCPReplay is a suite of libpcap tools that permit among others to transmit previously
captured traffic traces. In this topology, host labeled as Node A replays traffic traces free of
anomalies as background traffic, sending packets to host labeled as Node C with the original
IP addresses of the trace. In order to replay these attacks, host labeled as Node B replays a
trace built from only those traffic packets composing the real attacks, previously extracted by
hand from the original traces.

24

Type of Attack Class Resolution Generated Signature

SYN NetScan 1-to-N IPdst/24 (nSrcs == 1) ∧ (nDsts > 100) ∧ (nSYN/nPkts > 0.75)

SYN DDoS N-to-1 IPsrc/32 (nDsts == 1) ∧ (nSYN/nPkts > 0.7) ∧ (nPkts/sec > 10) ∧ (nSrcs > 20)

ICMP DoS 1-to-1 IPdst/32 (nICMP/nPkts > 0.65) ∧ (nPkts/sec > 50)

Table 3.1: Signatures generated by NEWNADA in the detection of a SYN Network SCAN
attack, a SYN DDoS attack, and an ICMP flooding attack.

The NEWNADA modules relies on the Monitoring Point (MP) and the Machine Learning
Process (MLP) that are part of the EUA XORP platform. These processes run in a host labeled
as Node C as indicated in Figure 3.1, which acts as a gateway for all the incoming traffic
directed towards the original IP addresses of the traces.

3.3 Detecting Attacks in WIDE and METROSEC real traffic
We begin by detecting and characterizing different attacks in WIDE through the EA4C and the
EA4O algorithms. The selected set of m features used in these evaluations include the number
of source/destination IP addresses and ports (nSrcs, nDsts, nSrcPorts, nDstPorts), the ratio of
number of sources to number of destinations, the packet rate (nPkts/sec), the average packet
size (avgPktsSize), and the fraction of ICMP and SYN packets (nICMP/nPkts, nSYN/nPkts.

The first case study corresponds to a distributed SYN network scan directed to many vic-
tim hosts under the same /16 destination network. The trace consists of traffic captured the
01/04/01. Incoming traffic is aggregated in IPdst/24 macro-flows, thus the attack is detected as
a small-size cluster. Table 3.1, line 1, presents the signature produced for this attack. The se-
lected filtering rules involve the number of IP sources and destinations, and the fraction of SYN
packets. The signature makes perfect sense since the network scan uses SYN packets from a
single attacking host to a large number of victims. Further analysis of the traffic that compose
each of the flagged macro-flows reveals different IPdst/32 flows of SYN packets with the same
origin IP address corresponding to the attacker. The signature permits to correctly identify all
the flows of the attack. The main advantage of the unsupervised approach relies on the fact that
this new signature has been produced without any previous information about the attack or the
corresponding traffic pattern.

The next two case-studies correspond to flooding attacks. For practical issues, traffic corre-
sponds to different combined traces (14/10/03, 13/04/04, and 23/05/06). Table 3.1, line 2, shows
the different combined filtering rules obtained in the detection of a SYN DDoS attack. Traffic
is aggregated in IPsrc/32 macro-flows. The obtained signature clearly confirms the nature of
a SYN DDoS attack; this signature is able to correctly isolate the most aggressive attacking
hosts of the DDoS, namely those with highest packet rate. Table 3.1, line 3, finally shows the
signature obtained in the detection of an ICMP flooding DoS attack. Traffic is aggregated using
resolution IPdst/32; thus, the attack is detected as an outlier rather than as a small cluster. The
signature includes typical characteristics of this attack, such as a high packet rate of exclusively
ICMP packets from the same source host.

Let us now focus the attention on the EA4O algorithm to detect anomalies and attacks as
outlying macro-flows. Figure 3.2 depicts the True Positives Rate (TPR) as a function of the

25

0 5 10 15 20 25 30 10x
−30.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

T
P

R

NewNADA

DBSCAN Outliers Detection

k−means Outliers Detection

PCA Outliers Detection

(a) WIDE, IPsrc/32.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

NewNADA

DBSCAN Outliers Detection

k−means Outliers Detection

PCA Outliers Detection

(b) WIDE, IPdst/32.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

NewNADA

DBSCAN Outliers Detection

k−means Outliers Detection

PCA Outliers Detection

(c) METROSEC, IPdst/32.

Figure 3.2: True Positives Rate vs False Alarms in WIDE and METROSection

False Positives Rates (FTR) in the detection of different attacks in WIDE and METROSEC
Figure 3.2.(a) corresponds to the detection of 36 anomalies in WIDE traffic, using IPsrc/32
macro-flow resolution. These anomalies include network and port scans, worm scanning ac-
tivities (Sasser and Dabber variants), and some anomalous flows consisting on very high vol-
umes of NNTP traffic. Figure 3.2.(b) also corresponds to anomalies in WIDE traffic, but using
IPdst/32 resolution. In this case, there are 9 anomalies, including different kinds of flooding
DoS/DDoS attacks. Figure 3.2.(c) corresponds to the detection of 9 DDoS attacks in the MET-
ROSEC dataset. From these figures, we observe that 5 attacks correspond to massive attacks
(more than 70% of traffic), 1 to a high intensity attack (about 40%), 2 are low intensity attacks
(about 10%), and 1 is a very-low intensity attack (about 4%). The detection is performed using
traffic aggregated at IPdst/32 resolution. In the three evaluation scenarios, the Receiver Oper-
ating Characteristic (ROC) curve is obtained by comparing the sorted dissimilarities in Drank to
a variable detection threshold.

We compare the performance of NEWNADA against three common approaches for un-
supervised detection of network attacks and anomalies: DBSCAN-based, k-means-based, and
PCA-based outliers detection. The first two consist in applying either DBSCAN or k-means to
the complete features’ space X

¯
, identify the largest cluster Cmax, and compute the Mahalanobis

distance of all the flows lying outside Cmax to its centroid. The ROC is finally obtained by com-
paring the sorted distances to a variable detection threshold. These approaches are similar to
those used in previous work [94, 38, 76]. In the PCA-based approach, PCA and the sub-space
methods [69, 70] are applied to the complete matrix X

¯
, and the attacks are detected by com-

paring the residuals to a variable threshold. Both the k-means and the PCA-based approaches
require fine tuning. In k-means, we repeat the clustering for different values of clusters k, and
take the average results. In the case of PCA, we present the best performance obtained for each
evaluation scenario.

The results obtained permit to illustrate the significant advantage of using the EA4O al-
gorithm for outliers detection compared to current approaches. In particular, all approaches
considered for comparison purposes generally fail to detect all the attacks with a reasonable
false alarm rate. Both the DBSCAN-based and the k-means-based algorithms get confused by
masking features when analyzing the complete space X

¯
. The PCA approach shows to be not

sensitive enough to discriminate different kinds of attacks of very different intensities, using the
same representation for normal-operation traffic.

26

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

NewNADA

DBSCAN Outliers Detection

k−means Outliers Detection

PCA Outliers Detection

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

NewNADA

DBSCAN Outliers Detection

k−means Outliers Detection

PCA Outliers Detection

(a) Training dataset (b) Testing Dataset

Figure 3.3: True Positives Rate vs False Alarms in KDD99.

3.4 Detecting Attacks in KDD99 artificial traffic
In this section we show that NEWNADA can detect other kinds of attacks when considering
different features. In addition, we evidence the significant advantage of using Unsupervised
Analysis techniques like those used in NEWNADA when discovering unknown attacks, com-
paring its performance against traditional signature-based detection systems; in particular, we
use a signatures-based NIDS based on decision trees.

Contrary to previous evaluations, the analysis for KDD99 traffic is performed off-line with-
out replaying any traffic traces, using the EA4O algorithm. The KDD99 dataset contains a wide
variety of intrusions simulated in a military network environment. Traffic consists of packets
aggregated into connections, each connection being a flow of TCP packets between a source
and a destination IP address. Therefore, we shall not talk about aggregation and macro-flows
in the following evaluations. Simulated attacks include DoS attacks, unauthorized access from
a remote machine - R2L attacks (e.g., password guessing), unauthorized access to super-user
privileges - U2R attacks (e.g., buffer overflows), and probing attacks (e.g., port scanning). Each
connection or flow is described by a set of m = 41 features (e.g., number of bytes, TCP flags,
failed remote-login attempts, etc.) and a label indicating either the name of the attack or if the
flow corresponds to normal-operation traffic.

In order to compare the performance of NEWNADA against the decision-tree-based NIDS,
we take two different data sub-sets. The first is used for training purpose and the second one for
testing. The testing dataset corresponds to instances of different attacks that are not present in
the training dataset; this dataset selection permits us to show the significant advantage of per-
forming unsupervised detection when new attacks arise. DoS and probing attacks in KDD99 are
represented by a large number of flows, in some cases even more flows than those correspond-
ing to normal-operation traffic. While this was not an issue for NEWNADA when evaluated in
previous section with real traffic traces, KDD99 flows provided at [7] are already pre-processed
and can not be aggregated because the corresponding IP addresses are not available. To avoid
this limitation in the already processed KDD99 flows, we have to select only a small fraction
of flows for both DoS and probing attacks in our training and testing datasets. In any case, we
have already proved that NEWNADA is able to detect both DoS and probing attacks in real

27

DOS PROBE R2L U2R
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

e
te

c
ti
o

n
 A

c
c
u

ra
c
y

Misuse−based NIDS EA4O

DOS PROBE R2L U2R
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

(a) Training dataset (b) Testing Dataset

Figure 3.4: NEWNADA vs Misuse-based NIDS in KDD99.

traffic traces when using macro-flows’ aggregation. The training dataset has 950 normal flows
and 255 attacks, while the testing dataset consists of 950 normal flows and 162 attacks.

Let us first evaluate the True Positives and False Positives rates obtained by NEWNADA
in both training and testing datasets. Figure 3.3 depicts the corresponding ROC curves. Figure
3.3.(a) shows the results obtained by applying the EA4O algorithm to the training dataset, while
figure 3.3.(b) shows the results obtained when analyzing the testing dataset. In both cases we
can appreciate that NEWNADA is able to detect a large fraction of attacks (more than 90%)
with very low false positive rates (less than 1% and 3.5% respectively). Figure 3.3 additionally
compares the obtained detection performance against the three previous approaches used for un-
supervised detection, i.e., DBSCAN-based, k-means-based, and PCA-based outliers detection.
In both cases, we appreciate once again the outperforming ability of NEWNADA with respect
to these approaches, which fail as before to detect as many attacks as EA4O with a reasonable
false alarms rate.

Let us now compare NEWNADA against a largely studied misuse-based NIDS built through
decision trees. We shall build a different decision-tree for each of the four different categories
of attacks (DoS, probe, R2L, and U2R), using the training dataset and standard C4.5 decision
trees [67, 74]. To train each of the trees for each different category of attacks, we consider
that the flows belonging to the rest of the categories of attacks as well as the normal operation
flows correspond to the “negative” class (there is no attack of the corresponding category). For
example, let us suppose that we want to build a decision tree to detect R2L attacks; in that case,
all the flows in the training dataset which belong to the R2L category belong to the “positive”
class (there is a R2L attack), while the normal-operation flows as well as the DoS, probe, and
U2R flows compose the negative class. In order to avoid over-fitting problems when training
the decisions trees, we have decided to use early-stopping learning. For this reason, not all the
attacks present in the training dataset are detected by the decision-trees-based NIDS.

Figure 3.4 presents the detection accuracy (number of correctly detected attacks) obtained
either with NEWNADA or with the NIDS previously described in both the training and test-
ing datasets. Results are individually presented for each of the four categories of attacks. As
expected, results obtained by both systems are very similar in the training dataset: in the case
of NEWNADA, we have already shown in figure 3.3 that more than 90% of the attacks can be

28

correctly detected; in the case of the NIDS, as can be expected, the system detects the attacks
for which it has been designed. What it is interesting to appreciate is what happens with both
systems when we try to detect unknown attacks. Figure 3.4.(b) illustrates the limitations of the
NIDS to detect unknown attacks, and more importantly, the significant advantage of using the
EA4O algorithm for detecting new previously unseen attacks. We refer to figure 3.5 to appre-
ciate the detection accuracy obtained with both systems for the different attacks on each of the
four different attacks categories available in the KDD99 dataset.

3.5 Computational Time and Parallelization
To complete our evaluation, we analyze is the Computational Time (CT) of NEWNADA. The
clustering algorithm of the Unsupervised Analysis module performs multiple clusterings in
N = m(m−1)/2 low-dimensional sub-spaces Xi ⊂ X . This multiple computation imposes scal-
ability issues for on-line detection of attacks in very-high-speed networks. Two key features
of the algorithm are exploited to reduce scalability problems in number of features m and the
number of aggregated flows n to analyze. Firstly, clustering is performed in very low dimen-
sional sub-spaces, Xi ∈ R2, which is faster than clustering in high-dimensional spaces [59].
Secondly, each sub-space can be clustered independently of the other sub-spaces, which is per-
fectly adapted for parallel computing architectures. Parallelization can be achieved in different
ways: using a single multi-processor and multi-core machine, using network processor cards
and/or GPU (Graphic Processor Unit) capabilities, using a distributed group of machines, or
combining these techniques. We shall use the term "slice" as a reference to a single compu-
tational entity. The current implementation of NEWNADA does not use parallelization, and
each sub-space is sequentially analyzed, one after the other. However, we show that paralleliza-
tion can significantly improve the CT, and therefore increases the volume of traffic that can be
monitored in an on-line basis.

Figure 3.6 depicts the CT of NEWNADA’s multi-clustering algorithm, both (a) as a function
of the number of features m used to describe traffic flows and (b) as a function of the number
of flows n to analyze. Figure 3.6.(a) compares the CT obtained when clustering the complete
feature space X , referred to as CT(X), against the CT obtained with NEWNADA, varying m
from 2 to 29 features. We analyze a large number of aggregated flows, n = 104, and use two
different number of slices, M = 40 and M = 100. The analysis is performed on traffic obtained
from the WIDE network, combining different traces to attain the desired number of flows.

To estimate the CT of NEWNADA for a given value of m and M, we proceed as fol-
lows: first, we separately cluster each of the N sub-spaces Xi, and take the worst-case of
the obtained clustering time as a representative measure of the CT in a single sub-space, i.e.,
CT(XSSCwc) = max i CT(Xi). Then, if N 6 M, we have enough slices to completely parallelize
the algorithm, and the total CT corresponds to the worst-case, CT(XSSCwc). On the contrary,
if N > M, some slices have to cluster various sub-spaces one after the other, and the total CT
becomes (N%M + 1) times the worst-case CT(XSSCwc), where % represents integer division.
The first interesting observation from figure 3.6.(a) relates to the increase of CT(X) when m in-
creases, going from about 8 seconds for m = 2 to more than 200 seconds for m = 29. As stated
before, clustering in low-dimensional spaces is faster, which reduces the overhead of multiple
clusterings computation.

29

The second important observation is about parallelization: if the algorithm is implemented
in a parallel computing architecture, it can be used to analyze large volumes of traffic using
many traffic descriptors in an on-line basis. For example, if we use 20 traffic features and a
parallel architecture with 100 slices, we can analyze 10000 aggregated flows in less than 20
seconds. Modern network processor cards are able to perform traffic monitoring even in 10
Gbps network connections. In a average-loaded 10 Gbps link (about 50%-60%) there are about
500.000 packets per second; if we consider traffic flows with an average rate of 500 kbps (about
50 pkts/sec) and a average duration of at least 20 seconds, then we have about n = 10000 flows
to analyze in each time slot, which means that NEWNADA could be even deployed in Gigabit
networks if enough slices are available. Current network processor cards vendors offer multi-
core solutions for high-performance networking with as much as 64 general purpose cores [2],
which are perfectly adapted to deploy NEWNADA for very high speed knowledge-independent
intrusions detection.

Figure 3.6.(b) compares CT(X) against CT(XSSCwc) for an increasing number of flows n to
analyze, using m = 20 traffic features and M = N = 190 slices (i.e., a completely parallelized
implementation of NEWNADA). As before, we can appreciate the difference in CT when clus-
tering the complete feature space vs. using low-dimensional sub-spaces: the difference is more
than one order of magnitude, independently of the number of flows to analyze. Regarding the
volume of traffic that can be analyzed with this 100% parallel configuration, NEWNADA can
analyze up to 50000 flows with a reasonable CT, about 4 minutes in this experience. When
evaluating with real traffic traces presented in Section 3.3, the number of aggregated flows in
a time slot of ∆T = 20 seconds rounds the 1500-2500 macro-flows, which represents a value
of CT(XSSCwc) ≈ 0.4 seconds. For the m = 9 features that we have used (N = 36), and even
without doing parallelization, the total CT is N×CT(XSSCwc)≈ 14.4 seconds.

30

guess_pass imap phf multihop warem. warec. spy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

named xlock xsnoop sendmail httptunnel worm
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

te
c
ti
o

n
 A

c
c
u

ra
c
y

Misuse−based NIDS EA4O

(a) R2L - Training dataset (b) R2L - Testing Dataset

neptune pod land back
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

apache2 udp_storm process_table
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

(c) DoS - Training dataset (d) DoS - Testing Dataset

buffer_over load_mod perl rootkit
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

xterm ps sqlattack
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

(a) U2R - Training dataset (b) U2R - Testing Dataset

portsweep ipsweep nmap
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

saint mscan
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Misuse−based NIDS EA4O

(g) Probing - Training dataset (h) Probing - Testing Dataset

Figure 3.5: NEWNADA vs Misuse-based NIDS - R2L, DoS, U2R, and Probing attacks.
31

0 5 10 15 20 25 30
0

50

100

150

200

250

Nº Features

C
lu

s
te

ri
n
g
 T

im
e
 (

s
)

Clustering in the complete Feature Space

Distributed Sub−Space Clustering, 40 slices

Distributed Sub−Space Clustering, 100 slices

1000 5000 10000 50000 100000
−1

0

1

2

3

4

5

Nº Patterns

C
lu

s
te

ri
n
g
 T

im
e
 (

lo
g
1
0
(s

))

Clustering in the complete Feature Space

Distributed Sub−Space Clustering, 190 slices

(a) Time vs. num features. (b) Time vs. num macro-flows.

Figure 3.6: Computational Time as a function of number of features and number of macro-flows
to analyze. The number of aggregated macro-flows in (a) is n = 10000. The number of features
and slices in (b) is m = 20 and M = 190 respectively.

32

Chapter 4

ISP-Driven Informed Path Selection

4.1 Introduction
IDIPS is a path availability and performance service. IDIPS clients send a path ranking request
to an IDIPS server. The ranking request contains a list of source addresses, a list of destina-
tion addresses and a ranking criterion. The IDIPS server determines all the possible <source,
destination> pairs. IDIPS then computes the cost of each path accordingly to the ranking cri-
terion requested by the client. The lower the cost, the better the path. IDIPS then ranks the
paths to respect the COST but hides the computation and topology details. The IDIPS server
then returns a list of <source, destination> pair to the requester. A rank value is associated to
each such pair. The pairs with the lowest rank value are the most preferable paths. To simplify
the processing at the requester, the returned list of ranked paths is ordered by rank value such
that the first paths in the returned list are preferred over the last paths in the list.

Chapter 3 of deliverable D2.3 describes the IDIPS architecture. In this deliverable, we ex-
perimentally validate the IDIPS architecture. To do so, we evaluate the accuracy, the stability
and the scalability that can be obtained with IDIPS. It is worth noticing that many experimenta-
tion results led us to architectural changes, even if D2.3 only presents the very final architecture
we reached.

4.2 Accuracy
IDIPS by itself does not perform prediction, implying that there is no accuracy issue related to
IDIPS itself. However, the way the measurement module is implemented can have an impact on
the quality of the measurement and, subsequently on the prediction accuracy. In Section 3.5 of
deliverable D2.3, we provide some example of measurement module and prediction module im-
plementations. In this section, we show the impact of the measurement module implementation
on its accuracy.

For the sake of the example, we propose an UDP ping Measurement module. This module
does not aim at being used in a real environment where more robust measurements techniques
should be used. To estimate the round-trip delay between a <source, destination> IP pair,
we send a UDP segment to the destination on a port number that is very unlikely to be open.
If the port is not opened and if no filtering applies, an ICMP port unreachable is expected to
be returned to the Measurement module. The sending of the UDP segments is done by using

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

UDP XORP ICMP

de
la

y
[m

s]

Figure 4.1: Delay precision comparison between standard UDP ping, ICMP ping and XORP
UDP ping

the XORP socket API. XORP sockets are similar to the POSIX sockets except that they are
asynchronous and that they are implemented with XRLs. In the remaining part of this section
we will use the term socket to refer to the XORP socket abstraction. All the implementation
details can be found in Section 3.5 of deliverable D2.3. The IP pairs are measured periodically.
To implement periodic probing, we use a XORP periodic timer. Every second, this timer calls
the loop method of our process. When this method is called, a UDP segment is sent to each
<source, destination> IP pair that should have been measured at the latest when the loop
method is called. It is not possible, without changing XORP to associate a time to an event on
a socket. The implementation limits the inaccuracy of the delay estimation by determining the
timestamp of the event as close as possible of the event as explained in deliverable D2.3.

Figure 4.1 compares the accuracy of the UDP ping we have implemented in a Measurement
module with the standard traceroute UDP ping and the ICMP ping command. Fig. 4.1 plots the
average of delay measured by the technique and the 95% confidence interval. For the compari-
son, we made 1,500 pings for each technique. The interval between two probes is one second.
The setup uses two machines directly on the same VLAN. One running IDIPS on Linux, and
the other receiving the UDP probes and running on Linux. The UDP ping is performed with
the traceroute command and the ICMP ping with the ping command. The traceroute ran
with the parameters -q 1 -r -n -N 1 -U to simulate a UDP ping.

From Fig. 4.1 UDP ping and XORP labels, we can see that using XORP introduces a
bias in the measurement. This bias is mostly due to the process context switching introduced
by the XRL-based implementation of the XORP sockets. Indeed, when a segment arrives at
the host, it is not delivered immediately to the measurement process. It is first received by
the main XORP process which then notifies the Measurement module process that an event
occurred on the socket (i.e., the reception of the ICMP port unreachable). This design thus

34

implies process switching in addition to the standard kernel/user space switching with POSIX
sockets. In addition, this scheme is also applied when sending the segment meaning that the
time between the probes is sent from the Measurement module process and the time the probe is
effectively received by the kernel depends on how rapidly the XRL is sent and processed by the
main XORP process. However, the bias is of less than 0.3ms in our setup which is acceptable
for most of the measurements. More interestingly, the measurement is better with the UDP
ping implemented in IDIPS than the standard ICMP ping. Unfortunately, we did not manage
to determine the reason why it performs better but the difference could come from the fact that
content of the ICMP ping must be copied while it is not required with the UDP ping.

As any prediction based on any measurement technique can be implemented in IDIPS, it is
not possible to determine the accuracy of the system. However, with this example, we show
that IDIPS should not impact the accuracy of a measurement and thus prediction. However, as
explained in deliverable D2.3, the implementation of the measurement in IDIPS requires partic-
ular engineering attention with respect to the constraints imposed by XORP (i.e., everything is
asynchronous and not timestamped).

4.3 Stability
Figure 4.2 shows the IDIPS service time from the client perspective. In particular, Figure 4.2(a)
gives the time (in ms) between each request and the associated reply for a particular run when
the client request contains ten destinations. Figure 4.2(a) shows how IDIPS is stable over trans-
actions, no drift is observed.

Figure 4.2(b) shows the IDIPS time distribution as quantiles. The dotted line represents the
median value, while the box plot gives the minimum and 95th percentile values as well as the
25th and 75th percentiles. As expected, the IDIPS service time increases with the number of
paths (i.e., the number of destinations in this example) induced by the client requests. The ser-
vice time linearly increases with the number of paths. This linear dependency is a consequence
of the conversion of the list received from the client in text into a binary format into the query-
ing module implementation, the construction of the possible paths and the cost computation for
each of such paths. The cost function having a temporal complexity of O(1), the total com-
plexity is O(s ∗ d) = O(n) where s is the number of sources in the request, d, the number of
destinations and n the number of paths. In our experiment, s = 1 making n = d. In addition, the
larger the number of destinations, the less stable the service time as suggested by the service
time distribution amplitude. The higher dispersion observed for the list of one destination can
be explained by the overhead caused by the switching between the XORP processes (i.e., the
finder and the querying module).

4.4 Scalability
Figure 4.3 breaks the IDIPS service time down into three categories: the network delay (la-
beled “network” - descending line pattern portion of the stacked bars), the path ranking (labeled
“IDIPS” - ascending dashed line pattern portion of the stacked bars), and the internal XORP

processing (labeled “XORP” - descending dashed line pattern portion of the stacked bars). For
plotting those results, we consider the median value among the ten runs. Instead of plotting the
median value of the service time, we rather consider the time proportion of each category.

35

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200000 400000 600000 800000 1e+06

se
rv

ic
e

tim
e

(in
 m

s)

transaction id

(a) service time stability - destinations=10

 0

 10

 20

 30

 40

 50

 60

 70

1 2 5 10 50 100

se
rv

ic
e

tim
e

(in
 m

s)

destinations

(b) service time distribution

Figure 4.2: IDIPS service time as perceived by the client

The time consumed by the network is negligible. This is due to clients and server, which
in our testbed, are separated by a single switch. However, as the IDIPS server is supposed to
be deployed within a campus or an ISP network (alike a DNS service), one can imagine that
the required network time (i.e., time spend in the network between the client and the server and
vice-versa) would be very close to what we experienced in our testbed.

In general, the time spent in the whole ranking process in IDIPS increases linearly with the

36

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 5 10 50 100

tim
e

pr
op

or
tio

n

destination

network IDIPS XORP

Figure 4.3: Proportion of the service time split - median over the ten runs

number of paths from the requests. With about only 12% to 20% of the time spent building
the list to return to the client once the costs are computed. The rest of the time is spent by
cost computation and attribute retrieval. The internal XORP processing represents most of the
service time (around 90%) and is also linearly dependent with the number of paths from the
requests. The time spent directly in the XORP internals is mostly due because of the marshaling
and unmarshaling of the XRLs and the context switching between the finder and the querying
module (remember that the XRLs are always processed by the finder.

Figure 4.4 shows the load on IDIPS in terms of requests/second number. As expected, the
capacity of IDIPS to process requests decreases with the request size. It is expected behavior
as large requests require more processing time, in terms of IDIPS (typically more cost func-
tion to evaluate and, thus, more lookups into the predicted values storage) and internal XORP

processing (as already suggested by Figure 4.3).
We also notice that, in the worst case (i.e., 100 destinations per request), IDIPS can still pro-

cess more requests per second than what it could be required for peer-to-peer applications [50].

37

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 5 10 50 100

#r
eq

/s
ec

destinations

Figure 4.4: Load on IDIPS without XRL

38

Chapter 5

Path availability and coordinate system

In Appendix A, we propose a distributed system that meets the routing system scalability and
quality objective. To this end, we first designed DMFSGD (Decentralized Matrix Factorization
based on Stochastic Gradient Descent), a novel Network Coordinate Systems (NCS), which is a
very scalable decentralized machine learning engine to predict unknown network performance
metrics (typically delay, available bandwidth) from a relatively small number of measurements
between some pairs of nodes. Secondly, we relied on this NCS to discover appropriate routing
shortcuts in the network, namely paths through intermediate nodes that turn out to have smaller
delays than the direct paths. In this section, we focus on the evaluation of these two components.
Both parts have been extensively validated through simulations on various real datasets.

According to deliverable D4.1, our experimental evaluation criteria were defined as follows:

• For DMFSGD, the NCS, we will evaluate its distance prediction accuracy. We want to
predict distances (delays) within the network, and the more accurate the predictions are,
the better. Our reference distance matrix was obtained by active measurement over all
pairs of nodes. In particular, we will show that our DMFSGD outperforms Vivaldi, which
was one of our objectives. We also show the impact of the three key parameters of our
algorithm [78, 77].

• For the shortcut detector, we will evaluate the gain of discovered routing shortcuts, which
will give a direct insight of its performance. This gain is computed as the ratio between the
best shortcut we have detected, and the existing direct path. For this deliverable we have
refined this criterion. Indeed, as there are many paths for which shortcuts are detected,
we thus obtain one value for each path and we build the CDF (Cumulative Distribution
Function) of these values. Moreover, as we usually discover many candidate shortcuts per
path, we will show the efficiency of our methods when we keep only the first k candidate
shortcuts among those found, while varying k [26].

5.1 Network Distance Prediction by Decentralized Matrix Fac-
torization

In this section, we evaluate our DMFSGD algorithm and compare it with state-of-the-art ap-
proaches. Assuming n nodes in the network, a n× n distance matrix is constructed with some

39

distances between nodes measured and the others unmeasured. Let D denote the measured dis-
tance matrix with di j the measured distance from node i to node j and D̂ the predicted distance
matrix with d̂i j the predicted distance computed from some function.

5.1.1 Evaluation Methodology
The evaluations were performed under the following criteria and on the following datasets.

Evaluation Criteria

• Cumulative Distribution of Relative Estimation Error Relative Estimation Error (REE)
is defined as

REE =
|d̂i j−di j|

di j
.

• Stress Stress measures the overall fitness and is used to illustrate the convergence of the
algorithm, defined as

stress =

√√√√∑
n
i, j=1 (di j− d̂i j)

2

∑
n
i, j=1 di j

2 .

• Median Absolute Error Median Absolute Error (MAE) is defined as

MAE = mediani j(|di j− d̂i j|).

Datasets

• Harvard226 contains dynamic and passive measurements of application-level RTTs,
with timestamps, between 226 Azureus clients collected in 4 hours [72].

• P2PSim1740 was obtained from the P2PSim project that contains static RTT measure-
ments between 1740 Internet DNS servers [9, 49].

• Meridian2500 was obtained from the Cornell Meridian project that contains static RTT
measurements between 2500 nodes [117].

• P2PSim525 is a complete sub-matrix between 525 nodes derived from P2psim1740.

• Meridian2255 is a complete sub-matrix between 2255 nodes derived from Meridian2500.

• Synthetic1000 contains the pairwise distances between 1000 nodes that are randomly
generated in a 10-dimensional Euclidean space.

The first five datasets were obtained from real-world networks and contain a large percent-
age of Triangular Inequality Violation (TIV) edges, whereas the last one was synthesized and
is TIV free. Here, an edge AB is claimed to be a TIV if there exists a triangle 4ABC where
AB > BC + AC. The last three datasets were only used in Section 5.1.2 for the purpose of
comparing the models of Euclidean embedding and matrix factorization.

40

Table 5.1: Properties of The Datasets
Dataset Nodes Symmetry TIV percentage Dynamic

Harvard226 226 / / Yes
P2PSim1740 1740 Yes 85.53% No
Meridian2500 2500 Yes 96.55% No
P2PSim525 525 Yes 76.17% No

Meridian2255 2255 Yes 96.25% No
Synthetic1000 1000 Yes No No

Table 5.1 summarizes these datasets. Note that we can neither tell the symmetry nor calcu-
late the TIV percentage of the Harvard226 dataset as the measurements between network nodes
vary over time largely, sometimes in several orders of magnitudes. The Harvard226 dataset is
rather dense with about 3.9% pairwise paths unmeasured in 4 hours. The other paths are mea-
sured in uneven frequencies with one measured the maximal 662 times and one the minimal 2
times. About 94.0% of the paths are measured between 40 and 60 times.

Implementations for Different Datasets As mentioned earlier, the DMFSGD algorithm adopts
the conventional random neighbor selection procedure in the scenarios where measurements are
probed actively and maintains dynamically an active neighbor set for each node in the scenarios
where measurements are obtained passively. Thus, for the Harvard226 dataset, we let each node
maintain an active neighbor set containing the nodes it has contacted within the past 30 minutes
and the timestamped measurements are processed in time order. For the other datasets, the ran-
dom neighbor selection is used and the measurements are processed in random order with no
neighbor decay as they are static.

To handle the dynamics of the measurements in Harvard226, the distance filter in [72] is
adopted that smoothes the streams of measurements within a moving time window (30 minutes
in our case), by a median filter. In the evaluation, we built a static distance matrix by extracting
the median values of the streams of measurements between each pair of nodes and used it as the
ground truth.

5.1.2 Euclidean Embedding vs. Matrix Factorization
One major difference between Euclidean embedding and matrix factorization is that they both
solve the same problem but are subject to different constraints. Euclidean embedding requires D̂
to be symmetric and to satisfy the triangle inequality, whereas matrix factorization only requires
D̂ to be low rank. Below, we compare empirically Euclidean embedding and matrix factoriza-
tion to give some insights to why this difference makes matrix factorization more suitable for
network distance prediction.

Algorithms To make the model comparison fair, we chose the state-of-the-art algorithms to
solve the Euclidean embedding and matrix factorization problems so that both are solved to
their limits. For Euclidean embedding, Multi-Dimensional Scaling (MDS) is the most popular
technique that searches the optimal embedding using an iterative algorithm. We adopted the
MDS implementation, mdscale, in the statistical toolbox of matlab [3].

41

For matrix factorization, SVD provides the analytic solution which is globally optimal [47].
Generally, SVD factorizes a given matrix D into three matrices of the form

D =USV T ,

where U and V are unitary matrices (a unitary matrix is a (square) n× n complex matrix U
satisfying the condition UTU = UUT = I, where I is the identity matrix), and S is a diagonal
matrix with nonnegative real numbers on the diagonal. The positive diagonal entries are called
the singular values and their number is equal to the rank of D.

To obtain a low-rank factorization, we keep only the r large singular values in S and replace

the other small ones by zero. Let Sr be the new S, X =US
1
2
r and Y T = S

1
2
r V T , where Sr(i, i)

1
2 =√

Sr(i, i). Then, D̂ = XY T is the optimal low-rank approximation to D.

Synthetic1000 P2PSim525 Meridian2255

3 5 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

S
tr

e
s
s

r

SVD

MDS

3 10 50 100
0.05

0.1

0.15

0.2

S
tr

e
s
s

r

SVD

MDS

3 10 50 100
0.1

0.15

0.2

0.25

0.3

S
tr

e
s
s

r

SVD

MDS

3 5 8 10
0

50

100

150

200

250

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

r

SVD

MDS

3 10 50 100
6

8

10

12

14

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

r

SVD

MDS

3 10 50 100
4

5

6

7

8

9

10

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

r

SVD

MDS

Figure 5.1: Comparison of MDS-based Euclidean embedding and SVD-based matrix factor-
ization on synthetic1000, P2psim525 and Meridian2255. The stresses and the median absolute
errors by both methods in different dimensions/ranks are shown on the first two rows respec-
tively. Note that a perfect embedding with no errors was generated for Synthetic1000 in the 10
dimensional Euclidean space by MDS.

Evaluations Since SVD cannot handle missing data, we only compare MDS and SVD on
the three complete datasets including Synthetic1000, P2psim525 and Meridian2255. On each
dataset, we ran MDS and SVD in different dimensions and ranks and computed the stresses and
MAE, shown in figure 5.1. It can be seen that the accuracies by SVD monotonically improve
on all three datasets as the rank increases, whereas consistent improvements by MDS are only
found on Synthetic1000 which is TIV-free. On P2psim525 and Meridian2255 where severe
TIVs exist, MDS achieves no or little visible improvement after 10 dimensions.

These evaluations demonstrate the influences of different constraints imposed on the two
techniques. For Euclidean embedding, the symmetry constraint doesn’t cause any problem as
the RTTs in all datasets are symmetric. However, the constraint of triangle inequality is strong

42

Table 5.2: Matrix Factorization vs. Euclidean Embedding
Matrix Factorization Euclidean Embedding

node coordinate
xi = (xi1, · · · ,xir) xi = (xi1, · · · ,xir)
yi = (yi1, · · · ,yir)

distance function d̂i j = xiyT
j d̂i j =

√
(xi− x j)T (xi− x j)

constraints low rank
Symmetry: d̂i j = d̂ ji

Triangle Inequality: d̂i j < d̂ik +dk j

and can’t be relieved by increasing dimensions. In contrast, matrix factorization makes no
assumptions of triangle inequality, thus is not affected by the TIVs in the data. Note that the
accuracy improvement by increasing the rank is guaranteed for SVD-based matrix factorization.
However, this conclusion cannot be extended to the cases where missing data is present. We
will show later that increasing the rank beyond some value in matrix factorization for a large
amount of missing data will not further improve the accuracy.

This comparative study reveals the model advantages of Matrix Factorization over Euclidean
embedding. Overall, Euclidean embedding has a geometric interpretation which is useful for
visualization. However, due to the existence of TIVs and the possible asymmetry in network dis-
tance spaces, low-rank matrix factorization is more suitable for modeling the network distance
spaces. Table 5.2 lists a detailed comparison of matrix factorization and Euclidean embedding.

5.1.3 Impacts of Parameters
This section discusses and demonstrates the impacts of the parameters of our DMFSGD algo-
rithm.

k, r and λ Our DMFSGD algorithm has two common parameters, the regularization coeffi-
cient λ and the rank r, and the additional parameter, the number of neighbors k for the scenarios
where measurements are probed actively. Intuitively, r is the number of unknown variables in
each coordinate and k is the amount of known data that is used to estimate each unknown vari-
able in a coordinate. λ controls the extent of the regularization which avoids both overfitting
and the drifts of the coordinates.

Clearly, increasing k is equivalent to adding more data and thus always helps improve the ac-
curacy. However, a larger k also means more probe traffic and consequently higher overheads.
On the other hand, only a certain number of unknown variables can be accurately calculated
from a certain amount of known data. Thus, increasing r beyond some value for a fixed value of
k will only lead to severe overfitting and consequently, a large λ is needed to address it. In prac-
tice, the value of k should be fixed according to the requirements of the applications by trading
off between accuracies and measurement overheads. Following the suggestion in Vivaldi [31],
we set k = 32 for P2psim1740 and for Meridian2500 in the rest of this section. Note that k = 32
makes the available measurements considerably sparse. For instance, 32/1740 = 1.84% mea-
surements are available for each node in P2PSim1740 and 32/2500 = 1.28% for each node in
Meridian2500. Recall that no k is set for Harvard226.

43

Experiments under Different Configurations We then experimented with different configu-
rations of r = {3,10,100} and λ = {0.01,0.1,1,10}, with different loss functions and whether
to incorporate the non-negativity constraint, shown in Figure 5.2. η is adapted by the line
search, with the initial value of 103 for the L2 loss function and of 102 for the L1 loss function.

In particular, we made the following observations. First, the DMFSGD algorithm is gen-
erally more accurate when the robust L1 loss function and the non-negativity constraint are
incorporated. The likely reasons are that the L1 loss function is insensitive to large fitting errors
some of which are introduced by measurement outliers and that the non-negativity constraint
reduces the searching space which makes it easier to find a stable solution. Thus, the robust L1
loss function and the non-negativity constraint are incorporated in the DMFSGD algorithm by
default.

Second, λ = 1 seems to be a good choice under most configurations and is thus adopted by
default. Third, r has different impacts to different datasets due to their different data proper-
ties. In Harvard226 where available measurements are dense, the prediction accuracy improves
monotonically with r, whereas in the other two datasets where available measurements are
sparse due to the setting of a small k, better performance is achieved with r 6 10 and a large λ

is needed to overcome the overfitting caused by larger r’s, which confirms our analysis in the
previous section. Thus, by trading off between the performance on all three datasets, r = 10 is
adopted by default.

η As mentioned earlier, SGD is sensitive to the learning rate η where a too large η leads
to the overflow of the solutions and a too small η slows down the convergence. Although
this sensitivity is reduced by minibatch SGD, it is still difficult to find an appropriate constant
that works for all datasets and in all situations. We experimented with different constant η’s
and with the line search to adapt η dynamically. From Figure 5.3, it can be seen that the
line search strategy performs best in terms of both accuracy and convergence speed. Note that
the convergence speed is illustrated by the stress and MAE improvements with respect to the
average measurement number per node, i.e., the total number of measurements used by all
nodes divided by the number of nodes1. It can be seen that the DMFSGD algorithm converges
fast after each node probes, on average, 10× k measurements from its k neighbors. Although
no k is set for Harvard226, we treat it as k = 226.

Discussions By incorporating the line search strategy, the L1 loss function and the non-
negativity constraint, our DMFSGD algorithm is left with two tunable parameters: the rank
r and the regularization coefficient λ . The default configuration of λ = 1 and r = 10 is not
guaranteed to be optimal in different situations and on different datasets. However, fine tuning
of parameters is difficult, if not impossible, for network applications due to the measurement
dynamics and the decentralized processing where local measurements are processed locally
at each node with no central nodes gathering information of the entire network. Empirically,
the default parameter setting leads to good, though not the best, prediction accuracy to a large
variety of data.

1For P2PSim1740 and Meridian2500, at any time, the number of measurements used by each node is statisti-
cally the same for all nodes due to the random selections of the source and the target nodes in the updates. For
Harvard226, this number is significantly different for different nodes because the paths were passively probed with
uneven frequencies.

44

Harvard226 P2PSim1740 Meridian2500

r
=

3 0.01 0.1 1 10
0.095

0.1

0.105

0.11

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

0.22

0.24

0.26

0.28

0.3

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.35

0.4

0.45

0.5

0.55

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
4

5

6

7

8

9

10

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
10

11

12

13

14

15

16

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

9

10

11

12

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

r
=

10

0.01 0.1 1 10
0.05

0.06

0.07

0.08

0.09

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.2

0.25

0.3

0.35

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

0.4

0.45

0.5

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0

1

2

3

4

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
10

12

14

16

18

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
8

9

10

11

12

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

r
=

10
0 0.01 0.1 1 10

0.03

0.04

0.05

0.06

0.07

0.08

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.2

0.3

0.4

0.5

0.6

0.7

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

0.4

0.5

0.6

0.7

0.8

0.9

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
10

20

30

40

50

60

70

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

10

15

20

25

30

λ

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

Figure 5.2: Impact of parameters.

45

Harvard226 P2PSim1740 Meridian2500

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

measurement number (× k)

S
tr

e
s
s

1e−3

1e−2

line search

10 20 30 40 50
0.2

0.4

0.6

0.8

1

measurement number (× k)

S
tr

e
s
s

1e−3

1e−2

line search

10 20 30 40 50
0.2

0.4

0.6

0.8

1

measurement number (× k)

S
tr

e
s
s

1e−3

1e−2

line search

10 20 30 40 50
0

50

100

150

200

measurement number (× k)

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

1e−3

1e−2

line search

10 20 30 40 50
0

50

100

150

200

measurement number (× k)

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

1e−3

1e−2

line search

10 20 30 40 50
0

10

20

30

40

50

60

measurement number (× k)

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

1e−3

1e−2

line search

Figure 5.3: Impact of η under λ = 1 and r = 10 with the L1 loss function and the non-negativity
constraint. k is treated as 226 for Harvard226 and k = 32 for P2PSim1740 and Meridian2500.

The setting of k = 32 has been commonly adopted in many systems such as Vivaldi. How-
ever, most systems contain network nodes of a few thousands or less. For large systems of
more nodes, k has to be scaled with the number of nodes n. According to the theory of matrix
completion [25, 24, 65], one can recover an unknown n×n matrix of low rank r from just about
O(nrlogn) noisy entries with an error which is proportional to the noise level. Thus, k ∝ rlogn
to guarantee a decent prediction accuracy.

5.1.4 Comparisons with Vivaldi

Among numerous approaches on network distance prediction, we consider Vivaldi [31] as
the state of the art because of its accuracy and its practicability. To the best of our knowledge,
Vivaldi is the only system that has been adopted in a real Internet application, Azureus [114].
Other approaches such as GNP [88] and IDES [31] are impractical due to the usage of landmarks
which makes them impossible to be evaluated on the Harvard226 dataset. We consider these
landmark-based systems as a special variation of a generic decentralized model.

We only compare our DMFSGD algorithm with Vivaldi. To address the measurement dy-
namics and the skewed neighbor updates, we adopted the Vivaldi implementation in [72] 2 when
dealing with the Harvard226 dataset. The conventional Vivaldi in [31] was adopted to deal with
the other two datasets. We refer to the former as Harvard Vivaldi to make the distinction. In ad-
dition, despite the impracticality, we also demonstrate the flexibility of the DMFSGD algorithm
in dealing with the landmark-based architecture, referred to as DMFSGD Landmark, by forcing
each node to only select the landmarks as neighbors. Note that we only ran DMFSGD Land-
mark on P2PSim1740 and Meridian2500 because the dynamic measurements in Harvard226

2The source code was downloaded from http://www.eecs.harvard.edu/~syrah/nc/.

46

http://www.eecs.harvard.edu/~syrah/nc/

were obtained passively and thus we cannot select landmarks and force each node to only com-
municate with them. To make the comparison fair, 32 landmarks were randomly selected.

Figure 5.4 shows the comparisons between DMFSGD, Vivaldi/Harvard Vivaldi and DMF-
SGD Landmark. It can be seen that on different criteria, our DMFSGD algorithm either out-
performs or is competitive to Vivaldi. On Harvard226, DMFSGD is significantly better on all
criteria, especially on the MAE where DMFSGD achieved the 1ms MAE, in contrast to the
5ms by Harvard Vivaldi, meaning that half of the estimated distances have an error of less than
1ms. On P2PSim1740, DMFSGD is better on the MAE and the cumulative distributions of
REE, whereas on Meridian2500, DMFSGD achieved similar performance as Vivaldi on all cri-
teria. Note that DMFSGD and DMFSGD Landmark performed similarly on P2PSim1740 and
Meridian2500.

Harvard226 P2PSim1740 Meridian2500

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

S
tr

e
s
s

measurement number (× k)

DMFSGD

Harvard Vivaldi

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

S
tr

e
s
s

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

10 20 30 40 50
0.2

0.4

0.6

0.8

1

S
tr

e
s
s

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

10 20 30 40 50
0

10

20

30

40

50

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

measurement number (× k)

DMFSGD

Harvard Vivaldi

10 20 30 40 50
0

10

20

30

40

50

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

10 20 30 40 50
0

10

20

30

40

50

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

REE

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

DMFSGD

Harvard Vivaldi

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

REE

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

DMFSGD

Vivaldi

DMFSGD Landmark

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

REE

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

DMFSGD

Vivaldi

DMFSGD Landmark

Figure 5.4: Comparison of DMFSGD and Vivaldi. The default configuration of λ = 1 and
r = 10 with η adapted by the line search, the L1 loss function and the non-negativity constraint
is used in DMFSGD and DMFSGD Landmark. The 10 dimensional Euclidean space with
the Height model is used in Vivaldi and Harvard Vivaldi. Note that as the implementation of
Harvard Vivaldi only outputs the results in the end of the simulation, the final stress and the
final MAE are plotted as a constant.

47

5.2 Finding routing shortcuts
The knowledge of estimated delays between nodes can also be useful to select better paths for
real-time applications. In deliverable D2.3, we have proposed some methods that rely on the
nodes running an ICS to detect routing shortcuts in networks.

5.2.1 Problem Formalization
We say that an edge AB is a TIV-edge when there exists a routing shortcut ACB via some node C
in terms of delay. In such case, using C as a relay node to go from A to B instead of sending the
data directly from A to B reduce the delay experienced between A and B and is called overlay
routing. The second subproblem we address then consists in finding C nodes that are routing
shortcuts for a given path AB.

5.2.2 Experimentation and evaluation
To model Internet latency, we used three delay matrices containing results of measurements
performed in real networks: two publicly available data sets, the P2PSim data (1740 nodes) [9]
and the Meridian data (2500 nodes) [117], and a data set we obtained by doing measurements
between 180 nodes on Planetlab [93]. In these matrices, the percentage of paths for which there
exists at least one shortcut is respectively 86%, 97% and 67%. Since a shortcut is not necessary
useful3, we define an interesting shortcut as a shortcut that provides at least an absolute gain
of 10ms and a relative gain of 10%. The percentage of paths for which there exists at least an
interesting shortcut in our matrices is respectively 43%, 83% and 16%. So, searching shortcuts
in the networks modelled by these matrices can provide an improvement in terms of delays for
many paths.

We have simulated the behavior of Vivaldi on these three networks by using the P2PSim
[9] discrete-event simulator. Each node has computed its coordinates in a 10-dimensional Eu-
clidean space by doing measurements with 32 neighbors. Then, we simply applied our detection
criteria using the estimated delay matrices computed with the coordinates obtained at the end
of the simulations of Vivaldi. We will now evaluate the quality of the sets of detected nodes
provided by our criteria.

Shortcut detection

To evaluate the performance of our detection criteria, we first use the classical true positive rate
and false positive rate indicators. For a path AB, a good shortcut detection criterion must detect
a node C as a shortcut if it is a shortcut for the path AB (i.e., if it is a positive) and must reject a
node C if it is not a shortcut for the path AB (i.e., if it is a negative). The percentage of positives
detected as shortcuts is the true positive rate (TPR) and the percentage of negatives detected
as shortcuts is the false positive rate (FPR). We also define the interesting true positive rate
(ITPR) as the percentage of interesting shortcuts detected as shortcuts by the criterion. A good
detection criterion must provide a high (I)TPR and a low FPR.

3For example, for a path AB such that RT T (A,B) = 100ms, a node C such that RT T (A,C)+RT T (C,B) = 99ms
is a shortcut that provides an absolute gain of 1ms and a relative gain of 1%. Since using C as relay for sending
data from A to B will add an additional forwarding delay, such shortcuts are useless in practice.

48

EDC ADC HDC
TPR ITPR FPR TPR ITPR FPR TPR ITPR FPR

P2PSim 53% 83% 2% 65% 84% 9% 60% 83% 3%
Meridian 54% 64% 9% 70% 76% 25% 56% 66% 9%
Planetlab 37% 75% 1% 60% 81% 5% 59% 84% 2%

Table 5.3: Criteria shortcut detection results

The true positive rates and false positive rates obtained with our criteria are given in table
5.3. We see that the percentage of interesting shortcuts detected as shortcuts (ITPR) is good
in most of the cases for each criterion. Furthermore, the percentage of non-shortcuts detected
as shortcuts (FPR) is generally quite low. Considering these results, EDC seems to perform
better than ADC: although ADC is always able to detect slightly more shortcuts than EDC, it
also gives more false positives. EDC seems also to perform better than HDC: HDC is able to
detect a little bit more shortcuts than EDC (and less than ADC) but, HDC also gives more false
positives than EDC (but less false positives than ADC). So, in terms of quantity of detected
shortcuts, HDC appears like an intermediate solution between EDC and ADC.

Detection of the best shortcuts

Being able to detect lots of the shortcuts in a network is one thing, but what matters most is to
detect the most interesting shortcuts (those that provide the most important gain). Considering
only the paths for which there exists at least one interesting shortcut, the percentage of paths for
which the most interesting shortcut is detected in the matrices P2PSim, Meridian and Planetlab
is respectively 36%, 41% and 49% with the EDC criterion, 68%, 80% and 70% with the ADC
criterion and 64%, 71% and 74% with the HDC criterion.

Regarding those results ADC seems to be a better criterion than EDC. Indeed, EDC is able
to find the best shortcut for 40% of the paths (on average) while the ADC is able to find the best
shortcut for 70% (on average) of the paths. The results obtained with HDC are better than those
obtained with EDC but are worse than those obtained with ADC. So, HDC misses interesting
shortcuts that ADC is able to find. However, we must perhaps moderate our conclusion. Firstly
because ADC returns large sets of C nodes (including a non-negligible number of false posi-
tives) compared to HDC and EDC. At the limit, a criterion that detects as shortcut all C nodes
will obviously detect the best shortcut for each path but is completely useless. So, if we choose
to use ADC, we absolutely need a criterion4 to rank the C nodes of a set in order to keep only
a subset of the nodes. Moreover, EDC and HDC can give better results than we think. Indeed,
even if a criterion cannot find the best shortcut for a path, it may be able to find another shortcut
that provides almost the same gain. We will investigate that during the evaluation of the quality
of the ranking of the C nodes.

4Such criterion can also be useful for EDC and HDC because, even if thier sets of C nodes are generally smaller
than those returned by ADC, they can contain tens or hundreds of nodes.

49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Difference

All nodes - ADC

100 nodes - ADC

50 nodes - ADC

20 nodes - ADC

All nodes - EDC

20 nodes - EDC

10 nodes - EDC

10 nodes - ADC

No detection

(a) P2PSim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Difference

All nodes - ADC

100 nodes - ADC

50 nodes - ADC

All nodes - EDC

100 nodes - EDC

50 nodes - EDC

20 nodes - EDC

20 nodes - ADC

10 nodes - EDC

10 nodes - ADC

No detection

(b) Meridian

Figure 5.5: Comparison of EDC and ADC: Difference of Gr between the best shortcut and the
best detected shortcut.

Ranking of the detected nodes

For a given matrix and a given detection criterion, we proposed to rank the C nodes of each path
on the basis of the EGr they provide. We will now evaluate if this gives a ranking with the C
nodes providing the best Gr in the first positions. For this evaluation, we only consider the paths
for which there exists at least one interesting shortcut. To perform this evaluation, we consider
for each path that only the first k C nodes of the ranking are detected by the criterion (for several
values of the parameter k). For these subsets of C nodes we compute the difference between
the Gr provided by the best existing shortcut and the Gr provided by the best shortcut in the
subset. We thus obtain one value for each path and we build the CDF (Cumulative Distribution
Function) of these values. The CDFs obtained with different values of the parameter k for the
criteria EDC and ADC are given in figure 5.5.

The graphs named "no detection" in figures 5.5(a) and 5.5(b) give the CDF of the Gr pro-
vided by the best existing shortcut for each path of the matrix. Indeed, if there is no detection
criterion applied, there is no shortcut detected and the difference between the Gr provided by
the best existing shortcut and the Gr provided by the best detected shortcut is the Gr provided
by the best existing shortcut. By applying one shortcut detection criterion, we will detect some
shortcuts and, thus, reduce that difference for some paths. Since the computed difference is
smaller for more paths, the CDF will rise faster on the graphs.

The graphs named "all nodes - XDC" in the subfigures of figure 5.5 give the CDF computed
by considering all the nodes selected by the shortcut detection criterion XDC (ADC or EDC).
This is equivalent to using k = ∞. These are the best results that the given detection criterion
applied on the given matrix can provide. We can see that ADC still gives better results than EDC
considering those graphs. Indeed, with ADC, there are only a small part of the paths for which
the difference between the Gr provided by the best existing shortcut and the Gr provided by the
best detected shortcut is bigger than 0.2. That means that, for a small part of the paths AB, it
is still possible to find another shortcut C that would improve by more than 20% of RT T (A,B)

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Difference

All nodes - ADC

All nodes - HDC

50 nodes - HDC

20 nodes - HDC

50 nodes - ADC

5 nodes - HDC

20 nodes - ADC

1 node - HDC

5 nodes - ADC

1 node - ADC

No detection

(a) P2PSim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Difference

All nodes - ADC

All nodes - HDC

50 nodes - HDC

20 nodes - HDC

50 nodes - ADC

5 nodes - HDC

20 nodes - ADC

1 node - HDC

5 nodes - ADC

1 node - ADC

No detection

(b) Meridian

Figure 5.6: Comparison of ADC and HDC: Difference of Gr between the best shortcut and the
best detected shortcut.

the gain provided by the alternative path proposed by our shortcut detection criterion. This
difference is generally bigger with EDC.

Let us see what the situation is if we keep only the first nodes of the rankings. The graphs
named "k nodes - XDC" in the subfigures of figure 5.5 give the CDF computed by considering as
detected only the first k nodes of the rankings obtained by using the shortcut detection criterion
XDC (ADC or EDC). The first thing we see is that even if we take only a few nodes in the
ranking (e.g., 10 nodes), we obtain already a good improvement compared to the situation
without shortcut detection. We also see that ADC gives better results than EDC only if we keep
a sufficient number of nodes: more than 50 nodes for Meridian, more than 20 nodes for P2PSim
and more than 5 nodes for Planetlab5. Moreover, if we keep a sufficient number of nodes (100
nodes for Meridian, 20 nodes for P2PSim and 10 nodes for Planetlab), we obtain a result with
ADC that is better than what we can obtain by considering all the nodes with EDC. The number
of nodes to keep to obtain good results may seem important for Meridian but it represents only
4% of the total number of nodes.

Given these results we can conclude that, with ADC, when considering only 5% of the total
number of nodes in each matrix (that represents 125 nodes for Meridian, 87 nodes for P2PSim
and 9 nodes for Planetlab), we are able to provide a significant improvement of the RTT for lots
of paths for which there exists at least one interesting shortcut. But it is not a final conclusion:
we have still to observe the results obtained with HDC. The CDFs obtained with different values
of the parameter k for the criterion HDC (and the CDFs obtained with ADC for comparison)
are given in figure 5.6.

Considering the quality of the ranking of the C nodes, we see in figure 5.6 (graphs named
"k nodes - XDC") that HDC performs a lot better than ADC. Indeed, with HDC, even if we

5Since there are only 180 nodes in the Planetlab matrix, the sets of C nodes returned by the criteria are quite
small and keeping all the detected nodes is not really a problem. So, the quality of the ranking is less important for
that matrix and we will not show the graphs here.

51

take only the first node of the ranking, we obtain already a significant improvement compared
to the situation without shortcut detection. Furthermore, if we only consider the first 5 nodes
of a ranking, we obtain better results than if we consider the first 50 nodes of the rankings with
ADC. So, with HDC, we can provide a substantial improvement of the RTT for lots of paths
by considering only about 2% of the total number of nodes (that represents only 50 nodes for
Meridian, 34 nodes for P2PSim and 3 nodes for Planetlab).

5.2.3 Conclusion
We have presented a novel approach to network distance prediction. The success of the ap-
proach roots both in the exploitation of the dependencies across distance measurements between
network nodes and in the stochastic optimization which enables a fully decentralized architec-
ture. A so-called Decentralized Matrix Factorization-based on Stochastic Gradient Descent
(DMFSGD) algorithm is proposed to solve the distance prediction problem. The algorithm is
simple, with the same architecture as Vivaldi, scalable, able to deal with dynamic measurements
in large-scale networks, and accurate, generally superior to Vivaldi. In particular, experiments
on real data collected from Azureus demonstrate the potential of the algorithm being utilized
by Internet applications, which we would like to study in the future.

We showed that, for any given path AB, using only the RTT of that path and the information
available in an ICS, it is possible to select a small set of nodes containing very likely an inter-
esting one-hop shortcut (but not necessarily the best one) when shortcuts exist for that path. We
obtained the best results with our shortcut detection criterion called HDC. With that criterion
we are able to limit the number of potential shortcuts for any given path AB to about one or two
percent of the total number of nodes in the network. So, to improve significantly the latency
between A and B, we will only have to do measurements between A, B and these few candidate
nodes to know if they are really shortcuts and which of them is the best shortcut.

52

Chapter 6

OSPF SRG inference

This section provides some insight into the issues that arise when implementing the SRG in-
ference for the OSPF module. A generalized SRG table using probabilities allows to infer
pre-learned SRGs given a currently observed failing link. In the next section, we show how the
SRG table can be used to do this inference for any set of links, using conditional probability
analysis. After this, we show how the OSPF protocol impacts its failure detection accuracy, and
how the inference scales in terms of detection timing, memory sizes required for the SRG table
and calculations for multiple failure inference.

6.1 Conditional probabilities
The SRG inference information is presented to the OSPF module in the form of a table of
conditional probabilities as shown on Figure 6.1. Here Li corresponds with router links in
the OSPF area (each bi-directional physical link typically results in two adjacencies, which
are flooded as two router links in the LSA messages). Note that in the SRG table, the set L
consisting of Li is allowed to grow as more failures and SRGs are detected. Generally, only Li
for which a failure has been observed at least once will be included in the table.

L = {L1,L2, ...,Lm}
|L|= m

SRG j are the shared risk groups consisting of one or more (not zero) links Li. SRG j are therefore
sets consisting of Li:

SRG j ⊂ L with SRG j 6= /0

i.e.,

SRGi ∈ 2L \ /0

The elements in the SRG table matrix consist of the conditional probabilities P(SRG j|Li,
indicating probabilities of failure of SRG j occurring if failure of link Li is detected. For the
conditional probabilities corresponding to a link Li, the following stands:

n

∑
j=1

P(SRG j|Li +P({Li}|Li))≤ 1 ∀i ∈ 1, ...,m

53

LSA

L1
L2
…

Lm

SRG1 SRG2 … SRGn

P(SRG1|L1)

{L}

P(SRG2|L1) P(SRGn|L1) P({L1}|L1)

P(SRG1|L2) P(SRG2|L2) P(SRGn|L2) P({L2}|L2)

P(SRG1|Lm) P(SRG2|Lm) P(SRGn|Lm) P({Lm}|Lm)

…
…
…
…

…… … …

Figure 6.1: Outline of SRG table

Where P({Li}|Li) denotes the conditional probability of the failure of singleton SRG {Li}
will occur, that is, no further links will fail after Li. P({Li}|Li) may be zero. The following
convention is adopted for including {Li} as a column in the SRG table: if {Li} is not found, then
it is assumed that the ’left-over’ conditional probability of the row is assigned to P({Li}|Li):

P({Li}|Li) = 1−
n

∑
j=1

P(SRG j|Li) ≥ 0 ∀i ∈ 1, ...,m

P({Li}|Li) is then not stored but calculated at detection time (only necessary when no links
other than Li were detected as failing).

Alternatively, {Li} is reported as a column in the SRG table. In this case, the leftover condi-
tional probability is assigned to the occurrence of an as-of-yet unknown SRG?, with |SRG?|> 1
and SRG? /∈ {SRG1,SRG2, ...,SRGn}.

P(SRG?|Li) = 1−
n

∑
j=1

P(SRG j|Li)−P({Li}) ≥ 0 ∀i ∈ 1, ...,m

In this case, P(SRG?|Li) can be used to indicate confidence in the SRG inference table.
A larger P(SRG?|Li) leads to a lower confidence of correctness of the inference (for a certain
Li). For example, P(SRG?) can be initialized to a certain value and then lowered as more
observations about Li and its SRGs are available in failure history for the inference algorithm to
base on. We will assume P(SRG?|Li) = 0 to simplify the discussion.

The SRG table contains conditional probabilities that can be used to predict directly for a
single link failure. However, if an SRG failure occurs, link failures will be detected one by one.
The set of link failure continues to grow. Conditional probabilities for multiple link failures
can be calculated starting from the information present in the table. These multiple link failure
conditional probabilities have the form:

P(SRG j|L1∩L2∩ ...∩Ls) s≤ |L|

These can be derived from known information in the SRG table using the chain rule, with the
following assumptions:

P(Li|SRG j) = 1 ∀i, j : Li ∈ SRG j (6.1)
P(SRG j|Li) = 0 ∀i, j : Li /∈ SRG j (6.2)

54

For example, for a conditional probability for a double link failure {L1,L2}:

P(SRG j|L1∩L2) =
P(SRG j∩L1∩L2)

P(L1∩L2)
(6.3)

=
P(L1|SRG j∩L2)P(SRG j|L2)P(L2)

P(L1|L2)P(L2)
(6.4)

=
P(SRG j|L2)

P(L1|L2)
(6.5)

=
P(SRG j|L2)

P(
L1∈SRGk⋃

k
SRGk|L2)

(6.6)

=
P(SRG j|L2)

L1∈SRGk
∑
k

P(SRGk|L2)

(6.7)

In (6.3)(6.4), we use the chain rule for conditional probabilities. (6.5) uses (6.1). Finally,
we can state that failure of L1 occurs under condition L2 whenever failure of an SRG containing
L1 occurs. This basically means we trust the completeness of the SRG inference table, in that
no L2 failures are assumed to happen outside of the known SRGs. Note that for the probability
that any of the SRGs containing L1 or L2 occur:

P(
{L1,L2}∩SRG j 6= /0⋃

j

SRG j|L1∩L2) =

{L1,L2}∩SRG j 6= /0
∑
j

P(SRG j|L2)

L1∈SRGk
∑
k

P(SRGk|L2)

=

{L1}∩SRG j 6= /0
∑
j

P(SRG j|L2)

L1∈SRGk
∑
k

P(SRGk|L2)

= 1

By applying the chain rule differently and isolating P(L2|SRG j) instead of P(L1|SRG j), we
can also write:

P(SRG j|L1∩L2) =
P(SRG j|L1)

L2∈SRGk
∑
k

P(SRGk|L1)

(6.8)

Note that in both (6.7) and (6.8) the summation is essentially done over the same SRGk.
In both equations, we normalize an initial link-conditional probability over the other-link-
conditional probability of any SRGk failure. Identity of (6.7) and (6.8) is indeed established
when completeness of the SRG inference table is assumed. For example, assume the table is
filled in using simple counting of SRG failure events and calculating the conditional probabili-
ties as such from their associated event’s relative frequency. With nT the total number of SRG

55

events, nTk the number of SRGk events, nSRG j the number of SRG j events, we have:

P(SRG j) =
nSRG j

nT
(6.9)

P(Li) =

Li∈SRGi
∑
i

nSRGi

nT
(6.10)

and for the conditional probabilities, depending on whether SRG j includes Li or not:

P(SRG j|Li) = 0 ∀Li /∈ SRG j (6.11)

P(SRG j|Li) =
P(SRG j∩Li)

P(Li)

=
P(SRG j)

P(Li)

=

nSRG j
nT

Li∈SRGi
∑
i

nSRGi

nT

=
nSRG j

Li∈SRGi
∑
i

nSRGi

∀Li ∈ SRG j (6.12)

Therefore, starting from (6.7):

P(SRG j|L1∩L2) =
P(SRG j|L2)

L1∈SRGk
∑
k

P(SRGk|L2)

=

nSRG j

/
L2∈SRGi

∑
i

nSRGi

{L1,L2}⊂SRGk

∑
k

(
nSRGk

/
L2∈SRGi

∑
i

nSRGi

)

=
nSRG j

{L1,L2}⊂SRGk

∑
k

nSRGk

(6.13)

as the terms of the summation in the denominator are 0 for L2 /∈ SRGk. Obviously starting from
(6.8) we reach the same result, which is symmetric in L1, L2.

Similarly, we can derive conditional probabilities for SRG j occurring if failure of a set S of
multiple links is detected.

S = {L1,L2, ...Ls} (6.14)

P(SRG j|L1∩L2∩ ...∩Ls) =
nSRG j

S⊂SRGk
∑
k

nSRGk

(6.15)

In fact, S itself is an SRG (and so is {L1,L2} from the previous discussion). It is easily seen
that when S = SRG j, then P(SRG j|L1∩L2∩ ...∩Ls) = 1 in (6.15). nSRG j are not available from
the SRG inference table, however the conditional probability for a failure (L1 ∩ L2 ∩ ...∩ Ls)

56

consisting of joint failure of the links in S, can also be derived again from P(SRG j|Li) using the
chain rule:

P(SRG j|L1∩L2∩ ...∩Ls) =
P(SRG j∩L1∩L2∩ ...∩Ls)

P(L1∩L2∩ ...∩Ls)

=
P(L1|SRG j∩L2∩ ...∩Ls)P(SRG j|L2∩ ...∩Ls)P(L2∩ ...∩Ls)

P(L1|L2∩ ...∩Ls)P(L2∩ ...∩Ls)

=
P(SRG j|L2∩ ...∩Ls)

P(L1|L2∩ ...∩Ls)

=
P(SRG j|L2∩ ...∩Ls)

L1∈SRGk
∑
k

P(SRGk|L2∩ ...∩Ls)

(6.16)

Recursive application of (6.16) allows calculating P(SRG j|L1∩L2∩ ...∩Ls) in terms of the
initial P(SRG j|Li).

6.2 Failure detection and accuracy
The OSRF SRG inference relies on the detection of link failures. A clustering algorithm allows
for grouping such failures into an SRG as a set of link failure. The basic information model for
exchanging information such as detected failures and the SRG inference table itself is based on
the link failure primitive. However, OSPF in itself does not detect link failures, as it will simply
update its topology information after processing of incoming router LSAs and then recompute
the shortest-path tree.

Detection of a link failure may be straight-forward for local links, if they are monitored
and reporting hardware alarms, these alarms are escalated to the OSPF protocol. In the case of
XORP, an interface going up or down is reported to the OSPF module and leads to detection
(initiation or scheduling of a recompute) within some tens of milliseconds. On the other hand,
non-local link failure must be detected through correlation of incoming LSAs and the existing
link-state database, as described in deliverable D2.3. In this case, (router) LSA generation and
therefore failure detection rely on the OSPF HELLO protocol. This means that link failure
detection time is dictated by the HELLO message timer, namely, the time interval between two
HELLO messages, and the (Router)DeadInterval which indicates the number of seconds before
a router declares a routing adjacency as down (as it stops hearing adjacent router’s HELLO
messages).

In Figure 6.2, we show an example of remote link failure detection for a simple topology.
The remote routers send HELLO messages over the link that will be failing. These routers
detect the failure when a number of HELLO messages have not been received. This also means
that instants in time where detection can occur are limited by the expected arrival times of
HELLO messages from the adjacent router. For example, if the HELLO interval is 1 s, then
a link failure will only be detected once per second, and always an integer number of seconds
(an integer multiple of the HELLO interval) after reception of the last HELLO message before
the failure occurred. For example, as shown on the figure, for a ’router dead interval’ of 2 s,
a link failure is detected after two missing HELLO messages. This allows for the actual link
failure to occur anywhere within a time window stretching from the reception of the last HELLO
message, and the (not received) next message.

57

router-dead

hellohello

hello msg received

hello msg missing

t
hello

Figure 6.2: HELLO based failure detection

measurement time
∆LSA (avg.) 1.544 s
∆LSA (st.dev.) 0.414 s
|TLSA1−TLSA2| (avg.) 0.997 s
|TLSA1−TLSA2| (st.dev.) 1.5 ms

Table 6.1: HELLO based failure detection times

As expected, there will be some variance to the time between actual link failure, and its
detection through HELLO messages (and its subsequent detection at remote nodes through
link-state updates). For the HELLO interval = 1 s and router dead interval = 2 s, Table 6.1
shows average and standard deviation of the delay ∆LSA between physical failure and remote
detection. The average is more or less as can be expected, since the minimum detection time is
slightly large than HELLO interval (1 s), and the maximum time set to the RouterDeadInterval
(2 s), as shown on Figure 6.2. The detection time also includes OSPF processing time. We also
show the difference |TLSA1−TLSA2| between arrivals of LSAs from both ends of the failing link.
These depend on the exact time of HELLO messages in both endpoints of the link, which is
fairly stable but largely arbitrary in a general OSPF topology.

6.3 Recovery timing
A proof-of-concept setup was demonstrated [97, 96] that uses only simple clustering and a
non-overlapping SRG scenario. A comparison of recovery times for normal OSPF and SRG
inference enhanced OSPF were shown by routing a number of video-streams over the network.
As shown on the screenshot (Figure 6.3), this comparison was easily understandable by the au-
dience as each video stream was rendered as transported by standard OSPF (left half of stream)
and SRG inference enhanced OSPF (right half). The topology display showed current usage of
bandwidth on links part of the OSPF area as well as the clustering of SRGs.

Apart from the visual demonstration however, the timing behavior was also examined using
packet traces, in order to determine the duration of interruption of the video streams. Framerate
of the videos is 30 fps, which resulted in (bursts of) packets at 30 Hz, which gives up a resolution
of 33ms for timing results.

58

Figure 6.3: Proof-of-concept demonstration screenshot

Figure 6.4 shows packet traces obtained when applying the proposed technique to recover
three video streams. The streams are routed over different paths, visiting a set of spread-out
links in two non-overlapping SRGs. Interruption times for normal OSPF (top three traces) and
SRG inference augmented OSPF (bottom three traces) are shown, indicated as an interruption
in the corresponding trace line over time.

Four failure scenarios are executed. First, both SRGs are failed and recovered (i.e., the
OSPF adjacencies are interrupted and then re-established) once. This allows the SRG inference
algorithm to learn the existence of these SRGs. Initially, both cases show normal OSPF re-
convergence; the three streams are recovered one by one as the failures in each of the paths
links are detected. The exact interruption duration for each stream depends on timing of the
OSPF HELLO messages, and therefore varies per link, and also per stream, since each stream
is routed over a different link as far as the node doing the SRG inference is concerned. Note
that the SRG2 link corresponding with end-to-end connectivity for stream 1 was set up to be
monitored locally through a hardware alarm, yielding faster detection than normal HELLO
protocol based neighbor discovery seen for the other streams. Next, the SRGs are both failed
again, to show the improvement offered by the SRG inference. For the SRG inference scenario
(bottom traces) the streams are now recovered simultaneously as the first LSA caused by failure
of one of the SRG links arrives. Furthermore, when locally detecting one of the failing links in

59

s
ta

n
d
a
rd

S
R

G
 i
n

fe
r
e
n

c
e

local failure

SRG2

(learned)

SRG1

(learned)

SRG2SRG1

Stream 3

Stream 2

Stream 1

Stream 3

Stream 2

Stream 1

time

stream packet arrivals

hello protocol

based detection

local detection

simultaneous

recovery

<25ms

recovery

Figure 6.4: Packet traces

a SRG, as is the case for SRG2, all SRG links and thus all streams benefit from fast detection,
which allows for up to sub 25 ms recovery in the demonstration setup. Figure 6.5 shows the
traces for learned SRG2 on a shorter timescale. Incidentally, we see an interruption time which
is limited to loss of a single frame in the video stream. Local detection is used also in the
standard OSPF case (trace 4); however, in this case the normal recompute hold-off time is
maintained (see D2.3), so that recovery is delayed by 1 s. Recovery of the other streams then
takes much longer as remote HELLO based detection is still used.

6.4 Scaling of detection times
The previous section showed some sampled timing results for detection of a single link, which,
as far as OSPF is concerned, appears as an SRG of two forwarding adjacencies (two opposite
directed edges corresponding with the single link. Failure of the adjacencies is detected and
reported by the two separate advertising routers.

With failure detection that relies on HELLO protocol messages, the exact detection time
depends on the timing of those HELLO packets. These should have the same interval in the
entire OSPF area (they are sent at the same rate for all adjacencies), but there is a time offset
to the HELLO packet generation for the respective adjacencies. Once an SRG is learned, a
single failing SRG link may suffice to infer that SRG to be failing. The expected detection time
depends on the size of the SRG.

Taking an arbitrary moment t0 in time as calibration, the offset h for HELLO protocol mes-

60

1s

SRLG2

S
R

G
 i

n
fe

re
n

c
e

s
ta

n
d

a
rd Stream 3

Stream 2

Stream 1

Stream 3

Stream 2

Stream 1

Figure 6.5: Packet traces, detail for learned convergence, local detection

sage generation has a certain distribution ph(t) (e.g., typically uniformly). By convention, this
offset is at most the HELLO Interval H, i.e., falls within the interval [0,H[.

ph(t) = 0 t /∈ [0,H[(6.17)
ph(t)> 0 t ∈ [0,H[(6.18)

∫ +∞

−∞

ph(t) = 1 (6.19)

Detection occurs when two consecutive HELLO messages are not received (see Figure 6.2).
This means detection time ∆ (time between failure tF and detection tD) for a failure at t0 + nH
is given by:

∆ = tD− tF
= (t0 +nH +H +h)− (t0 +nH) = H +h (6.20)

As also shown on Figure 6.6. Note that the HELLO message offsets are basically time
calibrated on the failure time tF ; in the case of a uniform distribution of the offsets, this has no
impact on ph(t).

For the distribution p∆(t) of the detection time ∆, this yields:

p∆(t) = H + ph(t) (6.21)

From this, the statistical properties can be derived for the detection time of a single adja-
cency failure, e.g., for a uniform distribution of h(t), average detection time is µ∆ = 1.5H.

61

t0 t0 + (n–1)H t0 + nH t0 + (n+1)H

hello msg received

hello msg missing

time

t0 + (n–1)H + h t0 + nH + h

tF tD = t0 + nH + H + h
∆

h

Figure 6.6: Detection time Delta

For a larger SRG, detection time is ∆ of the first detected link. The detection time will be
lower as more links serve as detection for the SRG. This can be seen by deriving the distribution
of detection time ∆n for a SRG consisting of n entities (adjacencies). For this purpose, we first
calculate the cumulative distributed function P∆1(t) = P∆(t):

P∆(t) =
∫ 2H

0
pδ (t)dt

=
∫ 2H

H
ph(t)dt (6.22)

In case of a uniform distribution:

P∆(t) =

0 t < H
t−H

H t ∈ [H,2H[
1 t >= 2H

(6.23)

P∆(t) corresponds with the probability that ∆ ≤ t. The probability that the detection time
∆n for n elements is similarly limited by t can be derived from P∆(t). The n elements have

62

respective detection times ∆1,∆2, ...∆n.

P∆n(t) =
n

min
i=1

Di < t

= P(∆1 ≤ t ∪∆2 ≤ t ∪ ...∪∆n ≤ t)
= 1−P(∆1 > t ∩∆2 > t ∩ ...∩∆n > t)

= 1−
n

∏
i=1

P(∆i > t)

= 1−
n

∏
i=1

(1−P(∆i ≤ t))

= 1− (1−P∆(t))n (6.24)

With the assumption that the n elements have independent detection times. And with (6.23):

P∆n(t) =

0 t < H
1− (1− t−H

H)n t ∈ [H,2H[
1 t > 2H

(6.25)

So for the distribution p∆n(t) of the detection time of the entire n-element SRG:

p∆n(t) =
d
dt

P∆n(t)

= n(1−P∆(t))n−1 p∆(t) (6.26)

So, for (6.25), and p∆(t) = 1/H for t ∈ [H,2H[:

p∆n(t)|t∈[H,2H[=
n
H
(1− t−H

H
)n−1 (6.27)

For example, the expected average detection time for n elements is therefore:

µ∆n =
∫ +∞

−∞

t.p∆n(t)dt

=
n
H

∫ 2H

H
t(1− t−H

H
)n−1dt

=
n+2
n+1

H (6.28)

E.g., µ∆1 = 1.5H as earlier. Similarly, for σ∆n:

σ∆n =
∫ +∞

−∞

(t−µ∆n)
2 p∆n(t)dt

=
n
H

∫ 2H

H
(t− n+2

n+1
H)2(1− t−H

H
)n−1dt

=

√
n+2

(n+1)(n+2)
3/2
√

H (6.29)

63

Figure 6.7: Detection time ∆n for larger SRGs (n elements)

As can be seen from Figure 6.7, the average detection time approaches 1H (from 1.5H) for
SRGs consisting of a large set of elements (adjacencies). An important aspect is that, as σ∆n

converges to 0 quite quickly, the detection times become predictable for large SRGs. It should
be noted that if one of the elements in the SRG is detected locally, then the detecting router will
initiate the flooding of a trigger LSA that will in turn lead to fast recovery of the SRG in all
other nodes as well.

Also, (6.28) and (6.29) assume the HELLO message generation offsets to be independent
random variables. This is true when looking at, e.g., the average detection time of random
SRGs. It is also true when looking at the average detection time of a particular SRG, considered
over a long period of time. In this case, intermediate OSPF reconfiguration inter-node clock drift

64

and similar effects will make sure that the relation between HELLO offsets of the elements in
that SRG will be weak.

When looking at repeated failures of a single SRG in a short period of time, then the mutual
HELLO offsets of the SRG’s elements will be more or less fixed. The detection time statistical
properties will depend on the distribution of these HELLO offsets. For example, is the offset
is 0 (all HELLO messages in the SRG element set are generated at the same time), then –
statistically– it is as if there is only one element, so detection times will be those for n = 1.

Depending on the implementation, the mutual offset for the anti-parallel adjacencies that
make up a single link may be fixed as well. In this case (assuming an SRG consisting of L
bidirectional links), we should use (6.28)(6.29) not with the number of adjacencies n = 2L, but
with n/2 = L.

Note that in the case of a failing node (where all L incident links make up the SRG), we must
rely on the neighboring routers to detect its failure since the failing node is now disconnected
from the OSPF area (to which it used to belong before its failure) and neighboring routers do
not receive LSA from the failing node anymore. This means that, although the HELLO offsets
of the outgoing adjacencies may be interrelated, the L incoming adjacency HELLO offsets are
the ones that are relevant for detection timing.

6.5 Scalability of the SRG table
The SRG table is serialized for sending to the OSPF module. The minimum required infor-
mation for identification of an adjacency (or failure) is the OSPF Link ID, Link Data and link
type. ID and Data are 32-bit IP prefixes. Type can be encoded as a single byte. This means
information for an adjacency requires at least 9 bytes. Each SRG is encoded as a set of links. As
the set of links is first serialized in an array and sent to the OSPF module, the SRGs use indexes
into this array. Using a byte-sized index, we can index 256 adjacencies (the OSPF area may
have more adjacencies, as long as only 256 appear in an SRG). The conditional probabilities
that make up the elements of the SRG table are encoded as 32-bit floating point numbers.

The set of SRG will generally at least contain the singleton link SRGs for each link in the
OSPF area — note that these are actually then SRG sets of the two anti-parallel adjacencies that
make up the link. Also, we can expect the OSPF nodes to each act as an SRG. Additional SRGs
may appear because multiple links in the OSPF are being routed as multi-hop connections in
an lower layer. A worst case scenario would be a full mesh OSPF area established as over a
physical ring network.

A full mesh network of n nodes has 1/2×n×(n−1) links (and twice as many adjacencies).
The physical ring network has n links, each of which will form an SRG of the OSPF area links
routed over it. With L and Lring the set of OSPF area links and physical links respectively, N the
set of nodes, S the set of SRGs:

|L|= n(n−1)
2

|Lring|= n
|N|= n

|S|= 2n+
n(n−1)

2

65

The size of the node SRGs is n−1. The size of a singleton link SRG is 1. Finally, the size
of a physical link SRG is about 1/2×|L|. This gives, for the memory required for encoding the
table:

Mlinks =
n(n−1)

2
×9B

MSRGs =
n(n−1)

2
×1B n(n−1)

2 singleton SRGs

+n(n−1)×1B n node SRGs

+n
n(n−1)

4
×1B n physical link SRGs

Mprobabilities =
n(n−1)

2
(2n+

n(n−1)
2

)×4B

Adding everything up, we have:

Mtot =

[
n4 +

9
4

n3 +
11
4

n2−6n
]
×1B (6.30)

Note that generally, a single link consists of two adjacencies, so the SRGs are in fact twice
as large, containing both anti-parallel adjacencies. The node SRGs however do not double in
size since a failing node does not report its side of its incident links, these are not observed
and clustered. They are not pruned, but instead still become unavailable as the anti-parallel
adjacencies are pruned, so the failing node (and its outgoing adjacencies) becomes disconnected
from the topology. Finally, the number of links (rows) also doubles. This gives for actual total
memory when considering adjacencies and not links:

Mtot,ad j =

[
4n4 +

1
2

n3 +
13
2

n2−11n
]
×1B (6.31)

So, the SRG table size in bytes is O(n4). For n = 100 nodes, we have a 100+ MB SRG
table. Generally however, only SRGs that have been observed will be in the SRG table. If the
table still remains too large, it can be truncated. This means that SRGs with a low occurrence
(and therefore low inferred probability) can be omitted from the table. This may also cause
some links (rows) to be removed from the table, as they no longer are part of any of the SRGs
reported in the table.

6.6 Scalability of multiple failure inference
The recursive application of (6.16) allows calculating conditional probabilities of the SRGs
for any combination of failing links. This allows us to do inference for a currently observed
multiple link failure, even although the SRG table only contains these probabilities under single
link failures.

The algorithm 1 shows how this recursive application is performed. The algorithm starts
of with any link Lstart part of the set L of multiple failures. If Lstart is the only link in L, the
probabilities P(SRG j|Lstart) can be taken from the SRG table. If not, the probabilities stored
in p j (for each SRG j) are normalized for each of the remaining link in the failure set. Note

66

Algorithm 1 Inference for multiple failures
L← set of failing links
Lstart ← any failing link ∈ L
p j = P(SRG j|Lstart)
R← L\Lstart {remaining links}
D←{Lstart} {done links}
for all Li ∈ R do

D← D∪Li
for all j : D⊂ SRG j do

t j = p j/
Li∈SRGk

∑
k

pk

end for
p j = t j {conditional probabilities for links in D}
R← R\Li

end for
P(SRG j|L) = p j

that with each iteration, the set of j in the inner loop diminishes as the condition becomes more
stringent (D grows with each normalization).

In a general case, with |S| the number of SRGs and |L| the number of links in the failure
set, a single normalization requires one division and a number of additions in the order |S|. The
number of normalizations is of order |S|. |L|−1 sets of normalizations are required. The total
number of operations is therefore of order:

Nop = O(|S|2× (|L|−1)) (6.32)

For our previous example of full mesh routed over a physical ring, the number of operations
Nop (n = number of nodes):

Nop = O
(
(2n+

n(n−1)
2

)2× (
n(n−1)

2
−1)

)

= O(n6) (6.33)

67

Chapter 7

Automated Learning of Loop-Free
Alternate Paths for Fast Re-Routing

7.1 Introduction
Connection-less IP networks independently decide how to forward received packets or data-
grams. The information determining how they forward these packets (i.e., which outgoing in-
terface and next hop they will take) is stored in their local Forwarding Information Base (FIB).
The FIBs comprise (forwarding) entries that are derived from the information exchanged by
link-state routing protocols such as Open Shortest Path First (OSPF, [84]). These protocols dis-
cover the local topology (link states) and distribute the discovered information over the network
using Link State Update messages. As a consequence, every router can independently compute
the shortest routing paths towards other nodes in the network. Exchanges of link state rout-
ing information resulting from topology changes (dynamic reaction to topological changes due
to, e.g., link/node failures) lead to the re-computation of the routing paths and reconfiguration
of the corresponding FIB entries (re-convergence), as well as the update of the corresponding
routing and forwarding entries (note that these steps outline the IGP re-convergence process).
However, as every router performs the routing path computation independently of other routers,
transient (micro-)loops may be formed during the periods when a network is re-converging due
to inconsistent FIB entries. This problem is inherent to any asynchronous distributed routing
protocol and caused by inconsistent FIB entries resulting from the propagation time of the rout-
ing updates as well as the time needed to re-compute and distribute FIB entries. Packets which
are trapped into transient loops, never reach their destination and are simply lost after TTL ex-
piration. Prior work [45] has demonstrated that these loops can take hundreds of milliseconds.
Therefore, our goal is to minimize the re-routing time: the time needed for each node, after the
occurrence of a topological change, to use updated FIB entries -without relying on the full IGP1

re-convergence- along loop-free alternate paths for the maximum number of destinations. The
three-fold objectives of the paper (and of fast-rerouting techniques in general) are:

• Maximize the percentage of links (or nodes) that can be fully protected (i.e., for all desti-
nations)

1The term Interior Gateway Protocol (IGP) refers to any link state routing protocol running within a routing
system.

68

• Maximize the percentage of destinations that can be protected for all link (or node)

• Minimize the stretch increase on the routing paths between source and destination.

The proposed fast-rerouting technique relies on the avoidance of transient loops by detecting
them before failure occurrence. More precisely, it operates following three main steps. Initially,
each node determines its loop domain with respect to other (destination) nodes. The loop do-
main is determined by the set of nodes for which the loop-free neighbor criteria is not verified
along certain alternate routing paths before occurrence of topological change (when traffic for-
warded by node u and directed to destination t arrives at node v that forwards this traffic along
a path that reaches node u, i.e., v is a not loop-free neighbor of u). Then, the detecting node
selects an alternate routing path that ensures loop-freeness up to loop domain boundaries by
instantiating an alternate forwarding entry on each intermediate node (pointing to the loop-free
neighbor). Upon failure occurrence, the node triggers that loop-free alternate path (when traffic
from u directed to t arrives at v, v does not forward traffic along a path that reaches node u, i.e.,
v becomes a downstream neighbor of u).

This Chapter is structured as follows. Section 7.2 provides an overview of the current fast re-
routing techniques and positions the contribution brought by our approach. Section 7.3 provides
a detailed description of the proposed technique including a learning approach finding nodes out
of the loop domain of each node and the computation of the loop-free alternate path. Section V
details the experimental results we have obtained by simulation when running these procedures
on topologies representative of core networks to which the proposed technique would typically
apply. Finally, Section VI formulates our conclusions and some suggestions for future work.

7.2 Related work
Fast re-routing (or fast repair) techniques can be classified into the following three basic cate-
gories (see [106]).

7.2.1 Equal cost multi-paths (ECMP)
ECMP [54] can be used when a set of two or more paths towards the same destination d is
available. Assuming one of them doesn’t traverse the failure, that alternate path can be used as
repair path.

7.2.2 Loop-free alternate (LFA) paths
A Loop-Free Alternate path [13] exists when a direct neighbor of the router adjacent to the
failure has a path to the destination that can be guaranteed not to traverse the failure (loop-free
neighbor condition). The average coverage on common networks (that is strongly dependent
on the topology) shows variations from 60 to 90 percent. Indeed, when a link or a node fails,
only the nodes incident to the failure are initially aware that the failure has occurred and only
these nodes can re-route traffic along paths round the failure. These repairing routers have to
steer datagrams to their destinations despite the fact that most other routers in the network are
unaware of the nature and the location of the failure. A common limitation in most of the base
LFA mechanisms is an inability to indicate the identity of the failure and to explicitly steer the

69

repaired datagram round the failure. Consequently, the extent to which this limitation affects
the repair coverage is topology dependent.

An advanced LFA solution [44] consists in sequencing the FIB updates either spatially
(topologically ordered FIB update from far-end to the near-end neighbor contiguous to the
failure) or temporally (timely synchronized FIB updates). For instance, ordered FIB update
provides 100 percent loop-free convergence at the expense of a FIB update time proportional to
R ·MAXFIB, where R is the max (hop) length among paths to edge r used to reach destination
t (downstream SPF neighbor prior to the failure), and MAXFIB is a network-wide constant that
reflects the maximum time Tmax required to update a FIB irrespective of the change required.
Hence, time performance degrades proportionally to the path length, i.e., FIB updates are actu-
ally committed at the near-end after reception of a completion message traveling back from the
source of max (hop) length among path to edge r used to reach destination t. This solution is
not considered outside network maintenance operation as it suffers from slow activation.

7.2.3 Multi-hop repair paths
When there is no feasible loop-free alternate path it may still be possible to locate a router,
which is more than one hop away from the router adjacent to the failure, from which traffic will
be forwarded to the destination without traversing the failure. Multi-hop repair paths are more
complex both in the computations required to determine their existence, and in the mechanisms
required to invoke them. Multi-hop repair paths techniques can be further classified as:

• Mechanisms where one or more alternate FIBs are pre-computed in all routers, and the
repaired datagram is instructed to be forwarded using a "repair FIB" by some method of
per-datagram signaling involving, e.g., the detection of a "U-turn" [12].

• Mechanisms functionally equivalent to loose source routing that is invoked using the
normal FIB. These include tunneling-based approaches [21] that consist in "by-passing"
the topology change by pre-configuring tunnel whose path is not affected that change.
There are multiple variants of "tunnel-based solutions": single-sided (near-end or far-
end), double-sided (near-end and far-end), and distributed (tunnel segments). They all
suffer from the same problems: i) computational complexity, ii) tunnel pre-configuration
and maintenance, and iii) impact on forwarding plane. Thus, they all involve a high de-
gree of configuration for tunnels that in turn decrease the forwarder performance. Other
mechanisms such as the Not-Via technique [22] employ special addresses that are in-
stalled in the FIBs together with pre-computed routes that avoid certain components of
the network. This technique encapsulates the datagram to an address that explicitly iden-
tifies the network component that the repair path must avoid. This produces a mechanism
that always achieves a repair, provided the network is not partitioned by the failure.

Hence, several fast path repair/fast re-routing techniques already exist. Some of them are
used in operational networks such as base Loop-Free Alternates (LFA) and Equal Cost Multi-
Path (ECMP). They all aim to address the objectives introduced in Section 7.1. In this compet-
itive context, our approach is threefold: i) the proposed technique relies on distributed learn-
ing of the loop-domain at each node and ”best-alternate path” to a given destination2; ii) The

2both can either be performed on-line or by mining the link-state routing topology and the routing table (RT)
entries

70

proposed re-routing scheme does not assume modification of the link-state routing protocol op-
erations outside of the transient re-routing periods (as alternate forwarding entries take local
precedence over default IGP routing entries). Once, the IGP has re-converged unflagging data-
grams leads to the use of the primary path entries; iii) the coverage of the proposed re-routing
scheme is almost 100 percent.

7.3 Automated learning of Loop-Free Alternates

7.3.1 Assumptions
The proposed approach aims to accelerate the re-routing of traffic along loop-free alternate
routing paths in link state routing networks. Upon failure occurrence, the failure detection
technique is assumed to provide local information. Failure information propagation does not
rely on associated fast failure notification protocol (operating next to the link-state IGP) or
IGP parameter tuning. The only condition for our approach to be operational is that the loop
domain’s diameter is smaller than the flooding domain of the IGP. Otherwise, the technique
resumes as a best exit node selection to avoid loops inside the IGP routing domain but then
relies on neighboring domains for the alternate path to re-merge with the primary path (outside
the loop domain).

7.3.2 Preliminaries
The network topology is modeled by a weighted undirected graph G = (V,E,ω) with positive
edge cost omega, where V is the set of vertices or nodes (|V | = m) and E is the set of edges
or links (|E| = n). A non-negative cost function ω : E → Z+ associates a cost u,v to each link
(u,v) ∈ E. For s, t ∈V , let d(s, t) denote the cost of the path p(s, t) from s to t in G, where the
cost of a path is defined as the sum of the costs along its edges. We first introduce the following
distinction:

• For the pair s, t ∈V,s 6= t, if there exists a vertex u adjacent to vertex s, (i.e., edge (s,u) ∈
E(G)) such that d(u, t)< d(s,u)+d(s, t), i.e., u is a loop-free neighbor of s to destination
t, then the path (v0(= s),v1, . . . ,vm(= t)) is a loop free alternate path where ∀i : d(vi,vm)<
d(vi−1,vi)+d(vi−1,vm).

• For the pair s, t ∈V,s 6= t, if there exists a vertex u adjacent to vertex s, (i.e., edge (s,u) ∈
E(G)) such that d(u, t) < d(s, t), i.e., u is a downstream neighbor of s to t, then the path
(v0(= s),v1, . . . ,vm(= t)) is a distance decreasing downstream path, where ∀i : d(vi,vm)<
d(vi−1,vm). As a particular case, neighbor u of node s is the downstream SPF neighbor
of s for destination t, if node u provides the shortest path to t according to a shortest-path
first (SPF) routing scheme.

Note that the set of distance decreasing downstream paths is a subset of the set of loop-free
alternate paths meeting the condition ∀i : d(vi,vm)< d(vi−1,vm). We define the loop domain of
node u ∈V (G) as the set of node B(u) such that if a path p(s, . . . ,u, . . . ,w, . . . , t) traverses node
u and then node w it will loop back via node u before reaching destination t, i.e., w does not sit
along a loop-free alternate path to destination t from node u.

71

7.3.3 Steps and mechanisms
The proposed fast re-routing approach (ALFA) comprises three main steps:

• Step 1: each node u determines its loop domain B(u) with respect to each destination t
that it can reach (as indicated by its routing table entries). For this purpose, node u sends
a probe message towards destination t on the interface directed to one of its non-shortest
path from u to destination d. If the message returns to u (source of the probe message)
the message didn’t reach a node v located outside of the loop domain. We refer to such
node v as a loop-free node (LFN).

• Step 2: determine a node v located outside the loop domain of node u for destination
t and that sits along a non-shortest path towards destination t. Node v is referred to as
the loop-free node (LFN) and the path (u, . . . ,v, . . . , t) as the loop-free alternate path (or
more synthetically p(u,v, t)). Inside the loop-domain B(u) of node u, along the non-
shortest path that is selected as the loop-free alternate path and to which the probe mes-
sage sourced at node u is forwarded, alternate forwarding entries are configured for that
destination t. Indeed, the default forwarding entries at these nodes for destination t re-
fer to a path that traverses node u. More precisely, ∀w ∈ B(u) node w does not verify
the loop-free condition, the path p(w, t) includes node u, i.e., p(w,u, t). When the probe
message reaches node v, that message is returned to node u with the indication that no
FIB entry configuration is required to reach destination t (node v verifies the loop-free
condition: d(v, t)< d(u,v)+d(u, t). Note that with the BFS+ technique (as documented
in Section 7.3.6), the loop-free alternate path p(u,v, t) is the non-shortest path that differs
the most from the shortest path (considered as the primary path) before failure of a link
incident to u along the primary path from u to t, p(u, t) : v /∈ p(u, t).

• Step 3: upon failure detection by node u (assume, e.g., the failure of one of the links
incident to node u along its primary path towards destination t), the loop-free alternate
path is activated. The action of activation by node u of its loop-free alternate path p(u,v, t)
refers to the triggering operation of the alternate forwarding entry along the loop-free
alternate path inside the loop domain of node u, B(u). The alternate forwarding entries
are triggered from the reception of datagrams including as indication in their header that
these datagrams were re-routed by node u along the loop-free alternate path. Activation
of the alternate forwarding entries is performed until reaching node v. Outside of the
loop-domain of node u, datagrams remain flagged but without triggering any action at the
nodes traversed by these datagrams (the alternate and the primary forwarding entries are
indeed identical). This condition is sufficient to guarantee that the path p(v, t) followed
by the datagrams leaving the loop-domain is loop-free, i.e., as long as the path p(v, t) is
the distance decreasing SPF downstream path to destination t (the path p(v, t) does not
re-enter the loop domain of node u). When exiting the local routing domain (i.e., the link
state routing protocol flooding domain), the datagrams flagged by the re-routing node u
are unflagged by the boundary node of the domain.

The next paragraphs of this section explain each of these steps together with a description
of the corresponding procedures.

72

a

D b

g

pr
im
ar
y

ba
ck
up

backup

backup

Figure 7.1: Interface-specific forwarding

7.3.4 Router Model
A router consists of a Routing Information Base (RIB) and a Forwarding Information Base
(FIB). The terms RIB and routing table are used equivalently since we assume that a single
routing protocol is running in each routing domain. The FIB stores forwarding entries each
comprising the outgoing interface to be taken by individual datagrams for a given destination
prefix. It also stores an alternate forwarding entry for any given destination prefix. The use
of the alternate entry is triggered by the indication of a flag (bit) in the header of an incoming
datagram (to be decided in which field), further referred to as the alternate flag. Datagrams are
marked with this flag, from the moment a failure is noticed on the link towards the next hop
according to the primary forwarding entry.

In our router model, the forwarding decision is also conditioned on the incoming interface,
which implies that the alternate entry for a given destination prefix can be different for data-
grams arriving at interface x, compared to those arriving at interface y in a given router. This
interface-dependence allows us to keep using shortest path routing on the primary forwarding
entries. To ensure that the alternate forwarding entries have node-wide significance, the identi-
fier of the triggering node (that is the node that flags the datagram) should be known and stored
at configuration time as part of the alternate entries and be included as part of the flagged data-
gram. This is illustrated in Figure 7.1. The shortest path towards node D from node a and g is
via their direct link. However, using node-wide significant alternate routing entries to node D
enforces them to choose whether node a or node g is on the primary path.

If the primary next hop of node u along its primary path to a given destination becomes
unreachable due to a link or node failure, then i) the datagrams for that destination are flagged
(as indicated before) and ii) the alternate forwarding entry for the interface corresponding to
the failing link or node is chosen to forward the flagged datagrams along the alternate path.
At node w, the use of the alternate forwarding entry must not result into flagged datagrams
being sent back to node u (rule.1). Along the alternate path, flagged datagrams arriving from
primary interface (i.e., the interface corresponding to the next hop as indicated in the primary
forwarding entry) or more generally any interface if the identifier of the triggering node can
be retrieved from the incoming datagram, the alternate flag will automatically trigger the use
of the alternate forwarding entry to avoid looping behavior (rule.2). To avoid that the flagged
datagrams loop back to node u, the proposed technique comprises a cycle-free alternate path
computation technique. This technique is described in the next section.

73

7.3.5 Cycle-free alternate path computation
Initial FIB configuration

We initiate the Primary FIB (pFIB) of all nodes using the usual shortest-path computation tech-
niques for (connection-less) link-state routing protocols such as OSPF or IS-IS. The alternate
FIB (aFIB) stored at each node is initially a copy of the pFIB, using the same next hop for on
all interfaces as the one determined by the shortest path calculation for the pFIB. With one no-
ticeable exception: the aFIB entry corresponding to the primary forwarding entry is populated
with the next hop according to the shortest path excluding the link indicated by the primary
forwarding entry. We will refer to this entry as the Alternate Shortest Path entry (ASP entry).
Note also that after configuration, the forwarding entries for which the primary and the alternate
next-hop for the same destination are identical can be removed from the aFIB.

Alternate FIB configuration

As previously explained, once a single failure is locally detected by a given router, its incoming
datagrams toward the affected destinations are flagged, and the datagrams are forwarded accord-
ing to the alternate forwarding entry (the ASP entry as defined here above). However, because
downstream routers still forward flagged datagrams according to their locally computed short-
est path, it is likely that the flagged datagrams will be looped back to the flag-originating-node,
causing a forwarding loop.

To avoid forwarding loop situations, we combine two techniques: i) the discovery of a node
referred to as the loop-free node (LFN) which sits outside of the loop-domain of a given node
with respect to a given destination, and the LFN is out of the loop-domain of the given node with
respect to the LFN itself, and ii) the configuration of the aFIB entries along the path towards
the given LFN, this path is the one referred to as the alternate path. The loop-domain of a
given node u for a given destination t is defined as the set of downstream nodes (with respect
to the directionality of the traffic flow towards destination t) that forward incoming datagrams
received from node u along a path that traverses node u. Once flagged, the datagrams reach
the LFN, the path followed according to the rest of the AFIBs lead to the destination without
looping back to the original node again.

7.3.6 Loop-domain detection using BFS+
As indicated earlier, in order to ensure a loop-free alternate path from a node s towards a desti-
nation t, the former needs to find a loop-free node sitting outside of its loop-domain with respect
to t. For this purpose, we devise an extended Breadth First Search method (referred to as BFS+).
The recursive mechanism works as follows:

• Send a probe message towards t via all the neighbors of the node s (hop count diameter 1
from s).

• If all probe messages pass via the node s, mark the visited nodes, and repeat the procedure
with the neighbors of the marked nodes (excluding the already visited nodes) until at
least one probe message reaches a target node v sitting outside the loop-domain of node
u without passing via source node s. Upon the arrival of the probe message at node v, the
receiving node sends an acknowledgment message towards node s.

74

• When multiple LFNs are found within a given diameter from node s, the LFN is chosen
such that the alternate routing path towards t has the lowest similarity with the primary
path from s to t3.

The BFS+ algorithm is illustrated on Figure 7.2. The loop-domain of node s is indicated
with the circle with dotted lines, containing the nodes probe1 and probe2. Probe1 and probe2
are upstream nodes to s with respect to destination t. This implies that the shortest path of
these nodes will always pass via node s. Because these nodes are within hop count diameter 1,
BFS+ will first send probe via these nodes towards destination t. When the node s intercepts
these probe messages, BFS+ triggers probe messages to be send from hub nodes on hop count
diameter 2. Afterwards, the nodes probe3 and probe4 are tested. Both nodes forward the probe
message to destination t without passing via node s, and thus are LFNs. However, because the
path taken from node probe3 differs more from the primary path compared to the path taken
from node probe4 (which uses the same last link towards destination t), probe3 is elected as the
LFN by the procedure.

7.3.7 Configuration of path to LFN
Once an LFN node is elected using the previously described BFS+ technique, the loop-free
alternate path towards the LFN must be configured. This operation is realized by installing the
alternate forwarding entries along the alternate routing path from node s to the LFN. For this
purpose, the node s sets its forwarding entry towards the LFN as its alternate entry towards
destination t. The same procedure is used as indicated by the next hop(s) until the LFN is
reached.

The ALFA learning procedure executes the above LFN detection and LFN path-configuration
process from all nodes towards all other nodes (destination). When a node detects that the outgo-
ing interface corresponding to the primary routing entry for a given destination is not available,
based on a loss-of-signal event or a Hello timer timeout (as in OSPF), the alternate forwarding
entry towards the destination is used. This procedure will bring the packet to the LFN (as it was
previously configured to do so), and from then on, shortest path routing entries will bring the
packet from the LFN to the destination.

7.4 Experimentation

7.4.1 Environment
A custom simulation environment was developed by means of Python/C++ libraries to evaluate
the proposed cycle avoidance technique on a number of different networks. The default routing
behavior (primary routing entries) of the experimented networks follows shortest path routes as
configured by a distributed link-state routing protocol such as OSPF. To obtain representative
results, the computed routes were randomized and made independent between the nodes in the
network. This implies that, if multiple shortest paths are available between two network nodes,
every run will randomly choose a route, and configure the routing tables accordingly. This

3The similarity of paths from two nodes towards a third, can be measured by actively storing temporary for-
warding states during the probing process, or using traceroute measurements as is performed in [55]

75

Table 7.1: Network topologies

Network Nodes Links Degree
MIN AVG MAX

abilene 11 14 2 2.55 3
nobel-us 14 21 2 3.00 4
nobel-ge 17 26 2 3.06 6

garr 22 36 2 3.27 9
nobel-eu 28 41 2 2.93 5
geant2 30 47 2 3.13 8
renater 36 49 2 2.72 7
cost266 37 57 2 3.08 5

germany5 50 88 2 3.52 5
xwin 57 77 2 2.70 6

Figure 7.2: The probing process

performed independently on every network node. Every experiment has been re-run 100 times
with these randomized settings, and the reported quantitative results are averages over these
runs.

7.4.2 Network topologies
A set of 10 representative reference networks was used for evaluating the described techniques.
Most of these networks are known for research purposes (e.g. [90]), or are research networks
themselves. The number of nodes of these networks ranges between 11 and 57 nodes, and
their node degree is in the range [3,9]. For some of these topologies, single connected nodes
have been removed, because alternate routing paths are not possible for these anyhow. These
topologies are representative of environments where the proposed technique would primarily
apply. The properties of the reference networks are summarized in Table I.

76

7.4.3 Experimented techniques
The techniques with the following labels were benchmarked:

1. random. This technique refers to the configuration of usual shortest path routing entries
as performed by a link-state protocol such as OSPF, augmented with random alternate
entry routing entries (the only requirement is that the alternate next outgoing interface is
different from the primary outgoing interface).

2. learn_backup_ipfrrlf. The scheme technique refers to the configuration of Loop-Free
Alternates (also referred to as FRR-LFA) as backup entries as discussed in Section II.B
[13], if they are available. Finding a loop-free alternate entry is performed by probing the
paths from nodes’ neighbors to check if they loop-back towards the originating nodes.

3. learn_backups_alfa. Here, alternate forwarding entries are configured using the proposed
ALFA technique detailed in Section 7.3, which finds Loop-Free alternates using the BFS+
method. In this case, the LFN is chosen within the diameter of the closest node out of
the loop-domain, having a path towards the targeted destination which differs maximally
within the probed neighborhood.

7.4.4 Experimental results
This section discusses the performance of the mentioned techniques with respect to their abil-
ity to cover link failures (coverage), their consequences on the resulting length of the backup
paths (stretch), their communication cost for learning adequate entries, and their sensitivity with
respect to network characteristics.

Coverage

For each topology (see Table I), every possible single link failure was simulated. When a
configured alternate forwarding entry (using one of the three presented techniques) is not able to
recover the connectivity between all network nodes for a given link failure, the link is considered
to be uncovered. The percentage of links which cannot be fully recovered upon link failure
is denoted as the link failure coverage of the technique (the complement of this percentage
denotes the percentage of links which can induce cycles among at least one source destination
pair). Figure 7.3(a) depicts the link failure coverage of all considered re-routing schemes on
all evaluated networks. From this figure, we can observe that provisioning randomly alternate
entries is (as expected) only able to cover 20 to 50 percent of the link failures. FRR-LFA is able
to cover larger percentages of link failures, typically between 50 and 80 percent. The ALFA
technique which we propose is able to cover almost all link failures, and at least 95 percent.
The probability that a link failure will cause a cycle when selecting the alternate routing path
between a random pair of nodes can be calculated, by evaluating the connectivity between all
pair of nodes, for all possible single link failures. Figure 7.3(b) shows the resulting end-to-
end cycle probability induced by a single link failure for the experimented networks for all the
considered schemes. One can observe from this figure that the probability that a cycle occurs
between a given pair of nodes is high when using only random alternate entries, and lowest -
close to zero - when using the ALFA technique. For small networks, the difference between
provisioning random alternate forwarding entries and FRR-LFA is negligible.

77

ab
ile

ne

no
be

l−
us

no
be

l−
ge

ga
rr

no
be

l−
eu

ge
an

t2

re
na

te
r

co
st

26
6

ge
rm

an
y5

xw
in

random
learn_backup_ipfrrlf
learn_backups_alfa

A
ve

ra
ge

 c
ov

er
ag

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Average link failure coverage vs. topology

ab
ile

ne

no
be

l−
us

no
be

l−
ge

ga
rr

no
be

l−
eu

ge
an

t2

re
na

te
r

co
st

26
6

ge
rm

an
y5

xw
in

random
learn_backup_ipfrrlf
learn_backups_alfa

A
ve

ra
ge

 fa
ilu

re
 p

ro
ba

bi
lit

y

0.00

0.01

0.02

0.03

0.04

0.05

(b) Average failure probability vs. topology

ab
ile

ne

no
be

l−
us

no
be

l−
ge

ga
rr

no
be

l−
eu

ge
an

t2

re
na

te
r

co
st

26
6

ge
rm

an
y5

xw
in

random
learn_backup_ipfrrlf
learn_backups_alfa

A
ve

ra
ge

 s
tr

et
ch

1.00

1.02

1.04

1.06

1.08

1.10

(c) Average stretch vs. topology

ab
ile

ne

no
be

l−
us

no
be

l−
ge

ga
rr

no
be

l−
eu

ge
an

t2

re
na

te
r

co
st

26
6

ge
rm

an
y5

xw
in

random
learn_backup_ipfrrlf
learn_backups_alfa

A
ve

ra
ge

 c
om

m
un

ic
at

io
n

co
st

 (
x1

0K
 m

es
sa

ge
s)

0

2

4

6

8

(d) Average communication cost vs. topology

Figure 7.3: Average performance vs. topology

78

Stretch

The previous metric measured the quality of the protection techniques in terms of the proportion
of link failures they can potentially (fully) recover from. However, this metric doesn’t give
us information on the quality of the resulting alternate routing paths with respect to the path
length. It may be expected, that higher recoverability could have a detrimental influence on the
resulting path length. To assess this assumption, we calculate and depict the average stretch
of the alternate routing paths of all techniques in all networks in Figure 4. The stretch metric
indicates the ratio of the length of the alternate routing path (in hop count) vs. the length of the
shortest routing path when no failure occurs. When the alternate routing path has the shortest
length, the stretch is equal to 1. The average stretch calculates the average ratio over all resulting
path lengths. Figure 7.3(d) illustrates that the length of the selected alternate paths taken out
of all experimented techniques is at worst 10 percent longer than the (primary) shortest path
between two nodes. In most cases, FRR-LFA uses the shortest backup paths. This may be a
consequence of the fact that upon the failure only the first hop is different from the primary
shortest path in the network, while the ALFA technique may use longer detour paths to ensure
that the packet is out of the loop-domain of the failure detecting node. This explains the higher
stretch values for the ALFA technique.

Communication cost

Finding adequate alternate routing paths ensuring that no cycles occur requires some probing
and learning activity in the network. Techniques relying on probing lead to a cost with respect
the number of probing messages; this cost is referred to as the communication cost. Both FRR-
LFA and the ALFA technique involve probing: the first probes for a loop-free alternate neighbor,
the second probes for a node out of the loop-domain of the failure detecting node. Figure
5 depicts the number of probing messages that were needed before the required techniques
converged. The results illustrate that the ALFA technique requires a probing communication
cost between 20 percent (for the smallest networks) and 270 percent (for the largest) higher
networks.

7.5 Conclusion
We have proposed an alternative (learning) method for populating alternate routing entries.
The resulting technique is able to avoid almost 100 percent of potential routing cycles upon
the occurrence of single link failures in a given set of representative reference networks. We
showed that this had low impact on the quality of the resulting backup paths, which were at
most 10 percent longer than the shortest paths in the fully operating network. Future work could
focus on reducing the induced communication cost of learning adequate alternate entries. Using
the spatial correlation between several nodes, clustering techniques could correlate groups of
destinations allowing common LFNs along their alternate path.

79

Chapter 8

Profile-based accountability

8.1 Introduction
Today’s Internet has undergone a major shift since its original adoption: narrowband services
such as web browsing and e-mails are not the most popular services any more. Instead, they
have been replaced with multimedia services such as video streaming and on-line gaming,
which are all very bandwidth intensive and require strict Quality of Service (QoS) guarantees
to ensure a smooth service delivery. Even small drops in bandwidth can deteriorate the quality
as perceived by the end user.

As the demand for bandwidth in the Internet grows, so does the length of each connec-
tion. While a best-effort web browsing service (e.g. served by a web server) will typically
have to support many connections that last for a fraction of a second and transmit only a few
kilobytes, a video streaming service will have connections that can last for minutes and trans-
mit megabytes of data. These longer lasting connections increase the need for techniques that
ensure an adequate fairness between connections. The longer connections last, the more they
can take advantage of their achieved rate (e.g. by starving newly started connections) as they
are further away from their start-up phase, which is often characterized by a slow start behav-
ior. Enforcing fairness between connections is therefore becoming more and more important in
today’s Internet.

Today, the TCP protocol is by far the most widely used transport protocol [101], even for
video services where more and more progressive download based mechanisms are used. Al-
though the widely used TCP protocols all contain congestion avoidance algorithms that, in
theory, should enforce fairness between connections, practice has shown that existing differ-
ences between TCP stacks result in important limitations. This is motivated by one of the
IRTF’s recent RFCs [91], discussing the open research issues in Internet congestion control,
which identifies misbehaving senders and receivers as one of the 7 main challenges in conges-
tion control. Furthermore, the authors of [107] show that the presence of a single misbehaving
connection can lead to a collapse of the throughput of other connections. According to them, in
the worst case, the achieved gain of the misbehaving connection is a factor 30 million. As TCP
only resides on the terminals of a connection, a network relies on the correctness of the TCP’s
congestion avoidance algorithms. However, it is not in the TCP stack’s best interest to fea-
ture such altruistic behavior. Therefore, TCP implementations can exploit this trust to achieve
a higher throughput while violating TCP’s congestion avoidance principles, at the cost of the
throughput of other connections. As we will show in this section, such behavior can even be

80

MONITOR DETECTION AQM SYSTEM

Bad

Good Highest
priority

Lowest
priority

Good Good

Good

Good

Good

Bad

Content
Server

Edge Router
Cognitive AQM

Mechanism
Access Router

Clients

Figure 8.1: Overview of the role of a cognitive mechanism on top of an existing AQM system
to introduce a higher level of fairness. Individual TCP connections are monitored to detect
unresponsive TCP stacks, which can then be penalized to favor the responsive TCP stacks.

inflicted without modifying the implementation of a TCP/IP stack in the kernel. We call TCP
stacks that feature these limitations unresponsive, because they do not or inadequately respond
to congestion signals. Without in-network management, it is not possible to adequately manage
unresponsive TCP stacks.

Instead of solely trusting on the congestion avoidance behavior of the terminals, more intel-
ligence is often introduced into the network’s routers through the Active Queue Management
(AQM) paradigm. Instead of only dropping packets when a router’s queue is full, an AQM sys-
tem can drop packets earlier or can signal the existence of congestion to the terminals through
the Early Congestion Notification (ECN) [20], which marks the packets by setting a flag in
the packet header. The TCP terminals are then expected to respond to this congestion signal
by lowering their rate. Additionally, by assigning the connections to different traffic classes, a
router can also choose to prioritize one traffic class over the other.

In this deliverable, we focus on both misbehaving receivers and unresponsive senders. A
misbehaving receiver is a TCP receiver who deliberately ignores TCP congestion warnings
to willingly achieve an advantage in throughput at the cost of other, well-behaving TCP re-
ceivers. A misbehaving TCP receiver does this by tricking the TCP sender. On the other hand,
an unresponsive sender is a TCP sender who reacts differently to TCP congestion warnings
than is generally expected. This difference in reaction may or may not be deliberate and may
cause a difference in TCP throughput between different responsiveness levels. Often, different
responsiveness levels are caused by different TCP congestion avoidance mechanisms (e.g., a
Multiplicative Increase Multiplicative Decrease congestion avoidance mechanism compared to
an Additive Increase Multiplicative Decrease congestion avoidance mechanism). The problem
of misbehaving receivers is discussed in Section 8.3, while the problem of unresponsive senders
is discussed in Section 8.4.

81

8.2 Related work
Congestion control algorithms are probably the most widely available feedback loop algorithms
available in the current Internet. As the Internet connects users from all over the world, com-
peting for the same bandwidth, already from the Internet’s early adoption it became clear that,
in order to guarantee a reliable and fair data transfer, the rate at which the competing sources
are sending needs to be controlled. Due to the distributed nature of the Internet and thus the
lack of a centralized manager, these congestion control algorithms must apply adaptive heuris-
tic algorithms that estimate the network load and react by changing their rate on the sign of
congestion. Some key papers from Jacobson [58] and Chiu and Jain [28] highlighted the gain
of an adaptive algorithm, called Additive Increase Multiplicative Decrease (AIMD), that lin-
early increases the rate in the absence of congestion and exponentially decreases the rate in the
presence of congestion.

In today’s Internet, congestion control algorithms are typically deployed both on the termi-
nals (i.e. the end users) of the network as in the network itself. At the terminals, congestion
control in the TCP protocol was standardized in [10] and the concept of a congestion window,
denoting the maximum rate at which a sender may transmit, was introduced. Since then, con-
gestion control algorithms have found their way in all TCP implementations used, such as TCP
New Reno [42], which linearly increases the congestion window, and TCP CUBIC, which is
the default protocol in Linux in recent kernel versions and uses a cubic function to increase the
congestion window.

In the network itself, the introduction of AQM has led to a finer control on the traffic that
passes through the routers. Instead of using DropTail queues, which simply drops packets
once the queue is full, Random Early Detection (RED) [43] algorithms and variants such as
BLUE [40] maintain an exponentially weighted queue length and base their dropping prob-
ability on the average queue length. These alternate queuing algorithms have the effect that
the amount of packet drops, which is a signal of congestion for most TCP congestion control
algorithms, exponentially increases as the load increases. By combining RED with the ECN
mechanism, other congestion warnings than packet drops can be given earlier on to TCP termi-
nals without experiencing data loss.

The growing diversity in congestion control on one hand and the increasing importance
of achieving fairness on the other hand has led to modeling approaches where the interaction
between TCP congestion control and AQM is analytically modeled [34, 120]. Kelly et al. [64]
showed that a TCP congestion control algorithm on one hand and AQM scheme on the other
hand can be modeled as two separate components, a primal and dual component, that both try
to maximize a utility function. Depending on the implementation of the congestion control
algorithm, other utility functions can be provided. In striving to maximize their separate utility
functions, Kelly showed that they reach an equilibrium which corresponds to different fairness
levels depending on the specifics of the utility functions.

While these different levels of fairness can be characterized off-line with the knowledge
of the implementation details of the congestion control algorithms, for a router in an on-line
scenario there is no way of knowing these utility functions and the corresponding achieved
fairness. Therefore, this is a sub-optimal solution for a network provider: he typically wants
network fairness that does not depend on the type of congestion control algorithms used. As he
has no control over the terminals in the network, misbehaving TCP stacks can deteriorate the
quality of other, more trustworthy, TCP stacks [104].

82

In this section, we focus on misbehaving stacks caused by an unresponsive ECN mechanism.
This type of unresponsiveness has received much attention as the ECN mechanism can easily be
exploited to ignore ECN messages without requiring any change in the kernel’s implementation.
This has led to an extension of ECN, called ECN-nonce, defined by the IETF in [110]. ECN-
nonce enables a sender to check the integrity of a receiver. The authors of [68] extend the ECN-
nonce technique to also support misbehaving receivers in multicast scenarios. However, ECN-
nonce relies on the integrity of the server, which is sometimes not the case (e.g. in P2P networks
where the operator does not have control over any of the end hosts). Moreover, performing
the same integrity check by an AQM system in a router can be challenging. Our approach is
specifically designed to be deployed on top of an existing AQM system. Both [57] and [51]
address the issue of improving the fairness between connections, either through the design of a
new AQM algorithm or the adaptation of RED, respectively. Here, both approaches are focused
on penalizing misbehaving connections in the form of unresponsive UDP connections. In this
section, we focus on unresponsive TCP connections.

We argue that a cognitive approach, consisting of an unsupervised machine learning al-
gorithm, is most suited to detect misbehaving TCP stacks, because of its adaptive nature to
changing circumstances and because the detection of a misbehaving stack is in essence a clus-
tering problem that finds the cluster of good stacks versus the cluster of bad stacks. Machine
learning algorithms have been successfully applied to network management domains such as
improved routing [56], topology control [113] and anomaly detection [108, 18].

More specifically related to the problem of congestion control, the authors in [98] use a
classification method to identify the type of application based on statistical features of the con-
nections such as the length of the packets and the inter arrival times. In our approach, we use
similar statistical information of a connection to decide on the responsiveness of a connection.
In [37], a classification mechanism is proposed that is able to distinguish between losses related
to congestion and losses related to link errors. As many congestion control algorithms interpret
packet loss as a sign of congestion, the proposed classification method is able to filter out the
data losses that have nothing to do with congestion, which increases the throughput of the TCP
connections. The authors of [61] tackle the same problem but use Hidden Markov Models and
Expectation Maximization algorithms as machine learning techniques. Our proposed technique
is complementary to these techniques as it can only benefit from more responsive and hence
accurate decisions on congestion signals.

8.3 Misbehaving receivers
In this section, we propose a cognitive mechanism, which we call a cognitive accountability
mechanism, that is able to detect unresponsive TCP stacks and penalizes them to achieve a
better fairness between the individual connections. The cognitive mechanism can be deployed
on top of a traditional AQM management scheme and is transparent to the other nodes in the
network. It provides a service to the operator by altering the forwarding of packets to improve
the fairness. The main idea is that the algorithm holds subscribers accountable for their actions
by penalizing unresponsive behavior. A general overview of the proposed cognitive mechanism
is illustrated in Figure 8.1. The major contributions of this section are the following. First, we
propose a machine learning based detection algorithm that monitors the traffic passing through
a router and decides whether or not a TCP stack is unresponsive. The detection algorithm uses a

83

combination of outlier detection and clustering based on extracted flow statistics to find groups
of responsive and unresponsive stacks. Second, we present a differentiated AQM mechanism
that penalizes unresponsive stacks by disabling their ECN support. Third, we evaluated the cog-
nitive mechanism by deploying it on a testbed facility of more than 400 nodes. The performance
evaluation characterizes the accuracy and speed of the detection algorithm and identifies the ob-
tained gain of the differentiated AQM mechanism in terms of improved fairness for different
types of unresponsive stacks.

The flexibility provided by an AQM system can thus be exploited to introduce a greater
level of fairness between connections. If it is possible to detect unresponsive TCP stacks, an
autonomic differentiated AQM management can be introduced that distinguishes between re-
sponsive and unresponsive stacks to penalize unresponsive TCP stacks and reward responsive
TCP stacks. As this detection consists of finding different behavior between connections, we
argue that a cognitive approach is best suited. In this section, we provide an answer to the
following research questions: (1) How can the occurrence of unresponsive TCP stacks be de-
tected inside a router’s AQM system? (2) Can the penalization of unresponsive connections
lead to a better fairness between connections? and (3) How fast and accurate is the response of
a differentiated AQM management mechanism?

The remainder of this section is structured as follows: Section 8.3.1 characterizes the de-
structive effect of unresponsive TCP stacks on the obtained fairness. An overview of the ex-
perimental set-up used throughout the rest of the section is provided in Section 8.3.3. Sec-
tion 8.3.4 and Section 8.3.5 present the cognitive mechanism’s detection algorithm and differ-
entiated AQM mechanism, respectively. Both the detection and penalization algorithms are
evaluated in Section 8.3.6 and the section is concluded in Section 8.3.7.

8.3.1 Problem statement
In this section, we discuss the impact of introducing unresponsive TCP connections into a set
of TCP connections. We first describe how TCP stacks can be unresponsive and characterize
their gain afterwards.

Unresponsive TCP stacks

We introduced various levels of unresponsive TCP stacks by altering the response of these TCP
stacks to ECN signals. ECN messages are piggybacked with normal data segments and are
intended as an explicit congestion warning to the receiver that congestion has been experienced,
without requiring to drop packets. An ECN capable router such as those in an AQM system,
will typically set ECN’s Congestion Experienced flag in a segment to signal the existence of
congestion instead of dropping the segment. To achieve this, an AQM system uses a queuing
algorithm such as Random Early Detection (RED) [43] where segments are ECN marked when
the queue size exceeds a threshold and are only dropped under very high load conditions, i.e. if
another threshold is exceeded.

When an ECN message arrives at the TCP receiver, the receiver is expected to echo these
congestion signals back to the sender. This is done through ECN Echo (ECE) messages. The
TCP sender is expected to respond to this ECE message by lowering his congestion window
and confirming the decrease of the congestion window through a Congestion Window Reduced
(CWR) message.

84

Partially ignoring ECN messages A TCP receiver can easily exploit this mechanism by
ignoring some or all ECN messages he receives. In this case, the congestion signals are not
echoed back to the TCP sender, and he cannot adapt its congestion window leading to a higher
throughput until the load becomes too high and the TCP sender responds to actual packet loss.
After that, the rate is again gradually increased until packet loss is again experienced. When
only a fraction of the TCP stacks ignore these messages, they can achieve a higher throughput
because other TCP stacks will lower their send rate earlier. In this case, the unresponsive TCP
stack is positioned at the receiver side instead of the sender side. Note that an implementation
of such unresponsive TCP stack is straightforward and does not even require modifications
of the TCP/IP stack in the kernel. Received packets can easily be captured and modified to
remove the ECN flag, at which point they are sent to the actual TCP stack. In our experiments,
we varied the percentage of ECN messages that are ignored to introduce different levels of
unresponsiveness. In the remainder of this article, these type of unresponsive TCP stacks are
abbreviated as IgnoreX, where X is the percentage of ECN messages that are ignored. Hence,
Ignore30 will ignore 30% of all ECN messages.

Adaptively ignoring ECN messages Instead of ignoring random ECN messages, a second
type of investigated unresponsive TCP stacks performs a more adaptive ignoring of ECN mes-
sages. This type of ECN flag manipulation takes place on the receiver side, but assumes that the
receiver knows the configuration parameters and current queue size of the router sending the
ECN messages at all time. Note that this type of information is hard to estimate for the receiver.
However, this type of unresponsiveness denotes a more advanced ignoring as it continuously
switches between a responsive and unresponsive mode, which is of interest from a theoreti-
cal viewpoint, as it is harder to detect this behavior. In our experiments, the AdaptiveIgnore
component was deployed just after the queue to allow it to have access to the queue length.

In this case, the ECN Congestion Experienced flag is only ignored in situations where the
queue is not in an extreme load mode. These situations are denoted by the length of the queue
with respect to the RED thresholds. The idea is that the unresponsive stack pushes the queue to
the limit, without actually causing losses. Therefore, ECN messages are ignored until the queue
length is higher than the RED max threshold, at which a fraction of the packets of the packets are
being dropped by the queue. When this RED max threshold is exceeded, the unresponsiveness
is temporarily suspended which makes the TCP stack behave as a regular TCP stack again.
Once the decrease in the queue length is sufficient, denoted by the RED min threshold, the
unresponsiveness is again enabled and all ECN messages are ignored. In the remainder of this
article, this type of unresponsive TCP stacks is abbreviated as AdaptiveIgnore.

Experienced fairness

We investigated the impact of both types of unresponsive TCP stacks on the experienced fair-
ness. As the gain unresponsive connections achieve varies depending on the number of connec-
tions present, we illustrate a scenario where only 5 connections are active as well as a scenario
with an average of 400 active connections. Both scenarios use a network model that will be
presented in Section 8.3.3.

85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

M
e
a
s
u
re

d
 B

a
n
d
w

id
th

 (
M

b
p
s
)

Time (minutes)

Responsive
connections

Unresponsive
connections

Figure 8.2: Average measured throughput for 4 responsive connections and 1 unresponsive
connection. A new unresponsive connection is started every 6 minutes for 4 minutes leading to
a starvation of responsive connections during that period.

8.3.2 Limited connection set
In this scenario, a maximum of 5 connections are present at each time: 4 responsive connections
that are active during the complete duration of the experiment and 1 unresponsive connection
that is initiated every 6 minutes and is stopped 4 minutes later. The 5 connections are transmitted
over one bottleneck link of 100 Mbps. Figure 8.2 illustrates the average measured throughput
of the responsive and unresponsive connections and clearly shows the disruptive nature of an
unresponsive connection on a small set of responsive connections. As can be seen, each time an
unresponsive connection is initiated it receives approximately 80% of all available bandwidth;
the 4 responsive connections, that in fact should receive 80% to have perfect fairness, only
receive a throughput of 5 Mbps each. This means that one unresponsive connection achieves
a throughput, which is 16 times higher than that of a responsive connection. Each time the
unresponsive connection is stopped, the throughput of the responsive connections is restored,
but quickly drops again as a new unresponsive connection is introduced.

Larger connection set The previous section showed that responsive connections can starve
if only a few connections are present in the network leading to throughputs that are 16 times
higher than their responsive counterparts. As traffic inside a router typically contains much
more active connections, in this experiment, we look at a scenario with a larger active con-
nection set. For this experiment, we introduced TCP connections that either ignore all ECN
messages (Ignore100) or adaptively ignore ECN messages (AdaptiveIgnore). We varied the
number of unresponsive stacks that were introduced. Figure 8.3 illustrates the gain each type of
unresponsive connection can achieve as a function of the time and depending on the amount of
unresponsive connections. This gain is defined as the fraction of the average measured through-
put of unresponsive connections to those of responsive connections, taking into account both

86

bottlenecks. Thus, the gain value is calculated as follows:

gain≡ 50×
2

∑
j=1

m×
n

∑
i=1

unresponsivei, j

n×
m

∑
i=1

responsivei, j

−100

where unresponsivei, j and responsivei, j are the throughput of the ith connection of bottleneck
link j in the set of unresponsive and responsive connections, respectively. Hence, the gain value
defines how much percent, on average, the unresponsive connections outperform the responsive
connections. For this experiment, we also illustrate the achieved gain during the initial start-up
phase, which lasts from 0 to 600 seconds, to show what happens if responsive and unresponsive
connections race for the same bandwidth. The gain illustrated from 600 seconds onwards,
shows the situation in a steady state.

As shown, all types of unresponsive connections achieve a remarkable gain when compared
to responsive connections during the start-up phase. Although the gain is lower than the sce-
nario with a limited connection set, where the gain was 1500%, it is still significant. During this
phase, all unresponsive connections are able to obtain a throughput which is more than 100%
higher than that of responsive connections. In the case where all ECN messages are ignored, the
throughput is even 200% more than its counterpart. As more connections are being started, and
all connections try to find an appropriate congestion window the gain decreases and differences
between the type of unresponsive connections start occurring. When only 1 single connection
is unresponsive, the gain is only notable during the start-up phase and disappears as the connec-
tions converge to a steady state. This is because the single unresponsive connection only has
an influence on other, responsive, connections if there are only a few responsive connections as
well. If the number of responsive connections is high then they will only have a minimal impact
on their throughput. As such, ignoring ECN messages in a steady state only results in additional
packet loss for the unresponsive connection, and automatically forces the unresponsive connec-
tion to lower its rate as well. As such, single unresponsive connections can only achieve a gain
during a start up phase, although this phase can last for several minutes.

However, if the share of unresponsive connections increases, a higher gain can be achieved
during the steady state as well. As shown in Figure 8.3, the AdaptiveIgnore type is able to profit
more from ignoring ECN messages if 30% of all connections are from that type as opposed
to only a single connection. Here, the achieved gain decreases as well over time but stabilizes
around the 900 second mark. At this point, the AdaptiveIgnore type still has a limited gain of
approximately 2.5%, which is almost negligible. This limited gain is due to the fact that the net-
work continuously suffers from high loads, which makes that the differences in responsiveness
between the regular connections and the AdaptiveIgnore connections disappear. The adaptive
nature of the unresponsive connection results in a TCP stack that does not ignore ECN messages
when packets are dropped from the queue. As the queue is continuously on the verge of drop-
ping packets, the AdaptiveIgnore connections behave just as regular connections, explaining the
only marginal gain.

The largest gain is achieved when all ECN messages are ignored, described as Ignore100. A
decreasing trend is also noticeable here as the start-up phase evolves to a steady state. However,
in this case, the gain of being unresponsive stabilizes at approximately 11.5%. This means that
the throughput of every unresponsive connection that ignores all ECN message continuous to

87

 1

 10

 100

 0 200 400 600 800 1000

Ac
hi

ev
ed

 g
ai

n
co

m
pa

re
d

to
 re

sp
on

si
ve

 c
on

ne
ct

io
ns

 (%
)

Time (sec)

30% Ignore100

30% AdaptiveIgnore

1 single
AdaptiveIgnore

connection

Figure 8.3: Achieved gain of being unresponsive when compared to responsive connections.
Three situations are considered: 30% connections ignoring all ECN messages (Ignore100),
30% of the connections adaptively ignoring ECN messages (Adaptive Ignore) and 1 single
AdaptiveIgnore connection.

be 11.5% higher than any responsive connection. This is because this type of unresponsive
connections is by far the most aggressive: they continue to increase their rate as they ignore
any congestion signals. Only when they actually suffer from losses, they will lower their rate:
at that time, other connections have also lowered their rate, but much more as they responded
to ECN signals as well. From then on, the same process repeats itself: the rate is gradually
increased until losses occur again.

In summary, these results illustrate three important points: First, all unresponsive connec-
tions do achieve a significant gain at the cost of responsive connections, especially in the start-
up phase. Second, even in the steady state, the gain is still notable if the share of unresponsive
connections is high enough: only a single unresponsive connection will not harm the fairness
between connections. Third, and finally, the connections with the highest aggressiveness are
able to obtain largest gain up to 11.5% more than responsive connections.

8.3.3 Scenario generation environment
In this section, we discuss the approach that was taken to construct the experiments, and will
be used throughout the remainder of this article. As we propose a machine learning approach
as part of the detection algorithm in the cognitive mechanism, this experimental approach was
used both for the creation of datasets and to evaluate the overall cognitive mechanism.

Experimental set-up

Experimental environment All experiments were carried out on the iLab.t Virtual Wall,
which is a large test-bed facility that uses the Emulab [116] management software to dynami-
cally construct network topologies. The Virtual Wall consists of 100 nodes that are connected
to a non-blocking 1.5 Tb/s VLAN Ethernet switch and a display wall for experiment visualiza-
tion. The nodes themselves are dual processors, dual core servers that each contain 4 or 6 gigabit

88

Content Server
RouterAQM System

with Cognitive
Mechanism

Client Terminal

Client Terminal1Gbps 100 Mbps

5 Mbps

5 Mbps

200x

Client Terminal

Client Terminal

5 Mbps

5 Mbps

200x

Router

Router

10
0

M
bp

s

20 Mbps

Figure 8.4: Used network topology for all experiments: the type of client terminals are varied in
the different experiments. Clients are assumed to request the download of a content item (e.g.,
video file) which is then sent from server to, possibly unresponsive, clients.

links, that are connected to the non-blocking switch. The Virtual Wall allows defining the net-
work topology through scripting; this includes the option of installing an operating system’s
image on the nodes and defining additional software to be installed on startup. The Virtual Wall
includes several images that can be installed to emulate typical network functionalities such as
server, client terminals, routers and impairment nodes. Once configured, root access is provided
to all nodes so that an operator has complete control over the execution of the experiment. As
such, the Virtual Wall can be used as a generic test environment for emulating large network
topologies, evaluating newly developed algorithms and performing scalability tests. The Virtual
Wall supports virtualization so that multiple virtual machines can be mapped to one physical
machine. Thus, the Virtual Wall supports emulated network topologies of more than 400 nodes.

Investigated topology Figure 8.4 illustrates the network topology that was used in the Vir-
tual Wall testbed facility. This network topology emulates part of a tree-based access network
topology of moderate size. As shown, a file server connects 400 client terminals. The network
consists of two bottleneck links: one bottleneck of 100 Mbps affecting all client terminals and
one bottleneck of 20 Mbps affecting only 200 of the 400 client terminals. Just in front of the
100 Mbps bottleneck link the cognitive accountability algorithm is introduced. As will be de-
tailed in the next Section, different types of unresponsive stacks are introduced at the client
terminals.These client terminals initiate a TCP connection between client and server and start
downloading files from the server. Note that the server is assumed to be responsive; however,
the occurrence of unresponsive client terminals on the other side of the network may trick the
server in sending at a too high rate and thus unwillingly favour unresponsive client terminals.
The cognitive mechanism monitors both the downstream and upstream traffic to detect these
unresponsive stacks. Note that, although we only focus on downstream (from server to client)
originating traffic, the approach can easily be extended to also support upstream originating
traffic as both are independent of the other. In that case, the cognitive AQM system would also
be deployed on the regular router in Figure 8.4.

89

Scenario definition To model the request rate and characteristics of each TCP connection,
the following probabilistic models were used. First, a Weibull process was used to model the
inter arrival times between different requests from client to server. The Weibull process was
configured with λ ≡ 2.15 and k ≡ 0.9, which resulted in an average inter-arrival time of 1.5
seconds between TCP requests. This results in an average of 400 connections in 10 minutes.
We uniformly distributed the requests amongst the different physical nodes. Note that these
values were chosen based on observations in [95]. Second, for each connection, the size of the
downloaded content was modelled using a Pareto distribution where the average download time
of a connection was set to 10 minutes. The effect of these request models is that, after a start-up
phase, during the experiment, new connections are started and old connections are stopped but
the expected number of active connections remains fixed at 400. As probabilistic distributions
are used to model the inter-arrival time and download length, this is the expected number of
active connections and the exact value may slightly differ depending on random values of the
probabilistic models.

Scenario and dataset creation tool

To generate the scenarios as discussed above, a framework was used that manages the execu-
tion of the experiment on the virtual wall. The tool, which has been proposed by the authors
in the past [71], is intended to support the generic execution of experiments but was specifi-
cally designed for this scenario. The tool allows configuring specific aspects of a tree based
network experiment both through a Graphical User Interface (GUI) and through XML. This
configuration consists, amongst others, of the definition and configuration of the Weibull and
Pareto distributions to model the request rate of the connections and a definition of the type of
TCP stacks that are assigned to the various client terminals. Moreover, the framework allows
emulating variations of network algorithms (e.g. because of parameter configuration changes)
under the same conditions, i.e. by using the same random seed, as well as changing the random
seed to introduce variability in the circumstances and ensure repeatability of the experiments.

The configuration and execution of experiments is then straightforward using the manage-
ment framework. For example, configuring a subset of the TCP client terminals on one hand
and the AQM system in the network topology on the other hand can be performed through the
following XML statements:

<user percent="33" ecn_ignore="off"
ecn="on" stack="reno"></user>

...
<nodes function="ecn-stripper" level="1">

<config up_delay="50ms" down_delay="25ms" stability="9"
max_p="0.02" queuelen="300" max_th="90" min_th="30"
red="default" Mbps="100">

</config>
</nodes>

This configuration defines that 33% of all client TCP stacks use the TCP Reno protocol and
support ECN messages. The config option allows setting the parameters of the Random Early
Detection (RED) queue in the AQM system.

The management framework was applied to two phases in the experimentation: in a first
phase, the logging functionality of the management framework was used to generate appropri-

90

ate datasets that allowed an off-line evaluation of machine learning algorithms for the cognitive
mechanism. In this phase, the management framework was thus used as a means to create a data
set for the machine learning components. The results of this phase were then used in the sec-
ond phase, where the cognitive mechanism with the best performing detection algorithm was
deployed into the actual network topology, allowing an on-line performance evaluation. The
automated behavior of the management framework enabled to easily repeat the same experi-
ments as those used for the dataset generation, as well as introduce new ones to create realistic
scenarios.

8.3.4 Detecting unresponsive connections
From the previous section it is clear that it is important to adequately respond to unresponsive
TCP connections as they can significantly decrease the fairness between connections. To do this,
it is first required to detect the connections that are being unresponsive. Once detected, specific
countermeasures can be taken to decrease the throughput of these connections and improve the
fairness. In this section, we propose a cognitive algorithm to perform such a detection. The
cognitive algorithm classifies incoming connections as being responsive or unresponsive based
on flow based statistics, collected from the traffic that passes through.

Attribute selection

In this experiment, we investigated which flow-based statistics are best suited to distinguish
between responsive and unresponsive connections. We investigated 4 different statistics: the
connection’s rate, the connection’s congested rate, the connection’s CWR count and the con-
nection’s ECE count. The connection’s rate denotes the average downstream (from server to
client) throughput of the connection during a recent time window. The connection’s congested
rate denotes the average downstream throughput that was marked with an ECN flag or dropped
in the queue. The connection’s CWR count is also measured downstream and is the number
of packets containing the CWR flag in the last time window. The connection’s ECE count is
measured upstream, from client to server, and is the number of packets with the ECE flag turned
on in the last time window.

Figure 8.5 shows the dependency between two sets of attribute candidates: the average
connection’s rate and congested rate on one hand (Figure 8.5(a)) and the connection’s CWR and
ECE count on the other hand (Figure 8.5(b)). The experiment consisted of 30% unresponsive
connections of the Ignore70 type, thus ignoring 70% of all ECN signals. We introduced only
unresponsive connections in the client terminals that only have the 100 Mbps link as bottleneck.
We averaged these attributes over time to avoid oscillations and because the absolute values did
not yield any clear division between cluster groups.

As illustrated, both attribute candidate sets cluster the data into two groups but only the
connection’s CWR and ECE count are able to distinguish between responsive and unresponsive
connections. The connection’s average rate and congested rate clearly divide the connection’s
into two groups, one for each bottleneck. In this case, the lower left group corresponds with 50%
of the connections (i.e. 200 out of 400) that each have an average throughput of approximately
0.1 Mbps, while the upper right group corresponds with the other half of the connections that
take up the remaining 80 Mbps of the 100 Mbps bottleneck link. In this latter group, responsive
and unresponsive connections are mixed. Although the unresponsive connections are more

91

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 50 100 150 200 250 300 350 400 450 500 550

C
o

n
g

e
s
te

d
 r

a
te

 (
k
b

p
s
)

Average rate (kbps)

Responsive connections
Unresponsive connections

(a) Average rate and congested rate

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

C
W

R
 c

o
u

n
t

ECE count

Responsive connections
Unresponsive connections

(b) Average CWR and ECE count

Figure 8.5: Comparison between several attribute candidates to base the clustering on. Both
attribute sets cluster the data into two distinct groups, but only the average CWR and ECE
count make the distinction between responsive and unresponsive connections.

incoming packets

responsive class behavior

unresponsive class behavior

detection

C
on

ne
ct

io
n

m
on

ito
rin

g

F
ai

rn
es

s
es

tim
at

io
n

O
ut

lie
r

de
te

ct
io

n

C
lu

st
er

in
g

La
be

lli
ng

Disabling
ECN Support

penalization

Figure 8.6: Overview of the detection algorithm and penalization component.

located at the right hand side of this group, which can be expected as - on average - they have
a higher throughput, the clustering between responsive and unresponsive connections in this
group is not feasible as the instances are too much interleaved.

The connection’s CWR and ECE count on the other hand do have a clear division into two
groups, one being responsive, the other being unresponsive. In this case, there is no visual
difference between the two bottlenecks, which is an important advantage: as the clustering is
independent of the existence of multiple bottlenecks, an increase in the number of bottlenecks
thus not means an increase in the number of clusters. The downside of using the CWR and
ECE count as attributes is that, unlike the division found in Figure 8.5(a), the distance between
the responsive and unresponsive groups is rather small. Therefore, the clustering can be prone
to noise on the data. As the connection’s CWR and ECE count are the only two attributes
that provide such a clear distinction between responsive and unresponsive ECN behavior, these
attributes are used in the cognitive algorithm to base the labeling of responsive and unresponsive
connections on. This is discussed in the remainder of this Section.

Detection of unresponsive connections

An overview of this detection algorithm and penalization component that uses the detection
algorithm is illustrated in Figure 8.6. The goal of the cognitive detection algorithm is to classify
incoming connections as being responsive or unresponsive. To do this, each connection is
monitored and statistics about each connection are calculated and continuously updated. Based
on a combination of clustering and outlier detection, the connections are divided into several

92

cluster groups, called profiles. Afterwards, these profiles are labeled as being responsive or
unresponsive. The algorithm itself is an iterative process of 5 steps:

Step 1: Connection monitoring In the first step, each connection is monitored individually
and 3 statistics are calculated: the connection’s rate, the connection’s CWR count and the con-
nection’s ECE count. To avoid oscillations of the measurements, each instantaneously measured
statistic, which is in fact already averaged over 1 second, is smoothed through an exponential
weighted moving average (EWMA). An EWMA is a straightforward way of calculating an av-
erage with the lowest memory constraints: only the average itself needs to be stored for future
calculations. Each updated value is calculated through a linear combination of the previous one.
For example, the connection’s average rate at time n is calculated as

ConnectionRate(n) = w×ConnectionRate(n)+(1−w)×Rate

where Rate is the instantaneous measurement of the connection’s rate. In our experiments,
we set the w value to 0.99, which corresponds with a moderate time window (i.e. of less
than 50 seconds). The exact time window is hard to determine as the contribution of previous
measurements to the current average decreases exponentially. These monitored statistics are
used in the detection algorithm as follows:

We calculate an updated value for the connection’s average rate once every second. The
calculation of the connection’s CWR count and ECE count are only executed when this is
triggered by the next step, the fairness estimation. The connection’s average rate is used in
the next step to detect the existence of a problem in fairness between flows. If such a problem
is detected, the connection’s CWR count and ECE count are also calculated and used in the
remaining steps.

Step 2: Fairness estimation While the connection’s average rate can easily be calculated
based on the size of each packet running through the monitoring point, the calculation of the
connection’s CWR and ECE count requires more resources. This is because the CWR and ECE
signals are encoded as TCP flags in the TCP header. This thus requires finding the location
of the TCP header in a packet and decoding the TCP flags. To avoid this costly calculation as
much as possible, it is only triggered if there is a potential problem with the fairness between
connections. Such a potential problem is estimated through the Jain’s fairness index [60], which
is a metric that rates the fairness between a set of values and is often used for evaluating the
fairness of TCP congestion control. The Jain’s fairness index for n connections is calculated as
follows:

Jain≡
(

n

∑
i=1

ri)
2

n×
n

∑
i=1

r2
i

where ri is the average rate of connection i. The Jain’s fairness index produces a value be-
tween 1/n and 1, where the former indicates the worst case scenario, and 1 indicates the best
case. In our algorithm, the execution of the next steps - and corresponding calculation of the
connection’s CWR and ECE count - is only triggered when the Jain’s fairness index is lower

93

than a threshold J. This threshold defines the variance that is allowed on the fairness between
connections, before a detection and corresponding penalization or reward is initiated.

If the threshold J is exceeded, it indicates a difference in fairness between the connections.
This difference can be caused either by the presence of unresponsive connections or because
another bottleneck exists further in the network that results in lower throughputs for a subset of
the connections. In the latter case, the outlier detection and clustering steps should not find any
unresponsive profiles.

Step 3: Outlier detection The goal of this and the following step is to divide the different
flows passing through the router into different groups, called profiles. These profiles repre-
sent different ECN behaviors that can be observed amongst the connections and are identified
through an outlier detection mechanism and clustering mechanism. Both mechanisms perform
their calculations based on two attributes: the connection’s CWR and ECE count. As discussed
in Section 8.3.4 these attributes are able to distinguish between profiles inflicted by unrespon-
sive connections but do not detect differences because of multiple bottlenecks. Therefore, they
avoid that a group that experiences an additional bottleneck is labeled as unresponsive.

As discussed in the previous section, a single unresponsive connection is also able to achieve
a moderate gain in terms of bandwidth compared to the other responsive connections. A single
unresponsive connection thus forms a profile on itself. In most clustering algorithms, a group
with only one instance is considered to be an outlier and ignored in the clustering process.
Even in clustering algorithms that allow to set the minimum number of instances belonging to
a cluster, it is typically not advisable to set this value 1 as this makes the clustering algorithm
more prone to noise. However, in this case, it is important that such a group with few instances
is still taken into account, as it represents an unresponsive connection.

To ensure that a single unresponsive connection is also detected, we perform an outlier
detection beforehand. This outlier detection is performed through the Local Outlier Factor
(LOF) algorithm [19], which is a density-based algorithm that is also used in data mining to
detect outliers. For each instance, the LOF algorithm calculates its density with its k nearest
neighbors. Instances with a high LOF value are considered to be outliers: in our algorithm,
each outlier is removed from the dataset for clustering and mapped to a separate profile, that is
labeled in the next step.

The LOF algorithm was chosen because it has an interesting property with respect to its k
parameter. Because the algorithm calculates the density with its k nearest neighbors, a cluster
with k+ 1 instances will not be identified as k+ 1 outliers but as a cluster. This is illustrated
in Figure 8.7, which shows the LOF calculation for an instance, marked as X , part as a group
of 6 instances (Figure 8.7(a)) and a group of 5 instances (Figure 8.7(b)), respectively. In both
calculations, k was set to 5. As shown, the group with 6 instances is not considered as having
outliers because its 5 nearest neighbors are close to each other. If one instance is removed from
that group, the LOF calculation also takes into account the next nearest neighbor which is part
of a complete different group. Therefore, the LOF value is much higher and these instances are
identified as outliers. In our algorithm, this characteristic is used to configure the k value in the
LOF algorithm. Since an outlier can represent an unresponsive connection, it is important not
to miss any outliers. Therefore, k is set to C−1, where C is the minimum number of instances
needed in the clustering algorithm to form a cluster. The chosen clustering algorithm, allows
setting this C value.

94

x

(a) Group of 6 instances

x

(b) Group of 5 instances

Figure 8.7: Graphical overview of an illustrative outlier calculation for a group of 6 instances
(a) and 5 instances (b). As k is set to 5, only the group of 5 instances is identified as outliers.

Step 4: Clustering Once the outliers are identified and removed from the dataset, the remain-
ing instances are clustered using a regular clustering mechanism, according to the connection’s
CWR and ECE count. In the algorithm, each cluster is considered as a separate profile. Since
it is not possible to know beforehand how many clusters remain in the dataset, after the outliers
are removed, we use the DBScan clustering algorithm [39] as this is one of the few algorithms
that don’t require to define the number of clusters beforehand.

Step 5: Labeling of unresponsive profiles The output of the previous step is a set of pro-
files, where it is known that each profile represents a different behavior with respect to the ECN
attributes. To goal of this last step is to label each profile as being either responsive or unre-
sponsive. The labeling algorithm is straightforward: if only one profile is detected through the
outlier detection and clustering algorithm, the Jain’s fairness index is assumed to be exceeded
because of multiple bottlenecks in the network, and the single profile is assumed to be respon-
sive. If more than one profile is detected, one profile is labeled as responsive, while the others
are labeled as unresponsive. Because the connection’s ECN statistics (CWR and ECE count)
are the only attributes the clustering is based on, different profiles can only occur because of
differences in responsiveness and not because of multiple bottlenecks. Additionally, as shown
in Section 8.3.4, regardless of the existence of multiple bottlenecks, responsive connections are
always grouped into one cluster.

To identify the unresponsive profiles from the set of profiles, the labeling algorithm inves-
tigates the value of the connection’s ECE count. From the attribute selection results in Sec-
tion 8.3.4, it is clear that unresponsive connections have a considerable lower ECE count than
responsive connections. While a similar trend can be observed in the connection’s CWR count,
the distinction between the connection’s ECE count is more clear. Therefore, the algorithm
labels the profile with the highest ECE count as being responsive and all the other profiles as
unresponsive.

Rationale behind a cognitive approach

In essence, the cognitive algorithm classifies connections as responsive or unresponsive based
on the value of the connection statistics. This may seem a behavior that can easily be imple-

95

mented by performing a simple threshold analysis on the connection statistics, which classifies a
connection as unresponsive if a threshold is exceeded. However, we argue that there are number
of reasons why a cognitive approach outperforms such a simple algorithm.

• Robustness against network changes: First, a cognitive approach is better suited against
changes in the network itself. The derived connection statistics, connection rate, CWR
count and ECE count, can easily differ depending on the context of the network scenario.
For example, the connection’s CWR count will typically be much higher when the link
capacity increases. If in this case, unresponsive connections are present the detection
algorithm still needs to distinguish between the two profiles. As such, the relative position
of the different profiles is of importance and not the values themselves. The clustering
algorithm takes care of this as clustering only focuses on finding groups of data and
disregards the scale of the values. In an algorithm that performs threshold comparison
this issue could be solved by normalizing the data. However, in this case, the existence of
outliers can result in loss of information in the normalization process.

• Robustness against connection changes: Changes can also occur in the connections them-
selves. As discussed in Section 4, we varied the percentage of ECN messages that are
ignored to introduce different levels of responsiveness. Ignoring only a fraction of the
ECN messages can be used by unresponsive connections to mask their defectiveness. In
a threshold comparison algorithm, such connections could be classified as responsive as
they do not exceed the crisp border, defined by the threshold. The clustering algorithm
allows for a more smooth transition as no crisp threshold is used for dividing the connec-
tions into clusters.

• No training set required: A common downside of a cognitive approach is that it requires
to be trained to the actual scenario before deployment. Although the algorithm solves
a classification problem, the algorithm uses only unsupervised machine learning tech-
niques. This means that it does not need a training set to learn its expected behavior
before deployment. Instead, a priori knowledge about the desired relative position of
each profile is used to decide on the responsiveness of a profile.

8.3.5 Penalization of unresponsive connections
Once the connections have been identified, the responsive and unresponsive connections are
assigned to different classes, a responsive and an unresponsive class, where each class receives
a separate AQM behavior. We propose a simple but effective penalization action to support such
a differentiated AQM behavior. The goal is to modify the AQM policy of those connections
that violate the overall network fairness. Connections belonging to the unresponsive class are
therefore not modified by the AQM system, as they already feature the desired behavior.

On the other hand, connections belonging to the unresponsive class are considered to be less
reliable and therefore penalized. Since we focus on unresponsiveness with respect to ECN sig-
nals, the penalization consists of modifying the ECN support of the unresponsive class. Since
connections belonging to the unresponsive class are assumed to not respond well to ECN sig-
nals, no ECN signals are sent to these connections. Instead, packets that would normally be
marked with an ECN flag are immediately dropped from the queue. This has the effect that
the unresponsive connections no longer need to react to ECN signals, and the responsibility

96

of lowering the sending rate is immediately positioned at the sender. This would eventually
also happen as the unresponsiveness of a client leads to a continuous increase of the queue,
and, in the end, to data loss as well. However, in this case, only connections belonging to the
unresponsive class are affected by an increase in packet loss, while connections belonging to
the responsive class continue to receive ECN signals. Disabling the ECN support also has an
impact on the connection’s CWR and ECE count attributes. As no ECN signals are received,
these ECN statistics will also be zero. Connections that are mapped to the unresponsive class
do not provide any useful information anymore for the detection algorithm, and are therefore
removed from the set of connections on which the responsiveness is determined by this step.

To avoid the penalization of responsive connections, the decision on which connections are
mapped to the different classes is not solely based on the detection algorithm, detailed in the
previous section. Instead, a hysteresis is introduced to avoid the oscillation of the output of the
detection algorithm. The introduced hysteresis consists of an exponential back-off algorithm:
if a connection is mapped to the unresponsive class a timer starts that lasts for T seconds. After
that, the connection is moved to the responsive class again. Once it is moved to the responsive
class, the value for the timer T is updated. Each time the detection algorithm marks the con-
nection as responsive, the T value is decreased with 1 second; if the detection algorithm marks
the connection as responsive again, the T value is doubled and the connection is mapped to the
unresponsive class again, and thus penalized, but this time for a longer period. New connec-
tions are thus given the benefit of a doubt, while connections that continue to give unresponsive
detection results are penalized for increasing longer periods.

Without this exponential back-off algorithm, connections that are mistakenly mapped to the
unresponsive class would continue to be penalized, since connections of the unresponsive class
are no longer considered in the detection algorithm. The exponential back-off algorithm allows
to periodically probe if connections were not mistakenly mapped. The frequency at which this
probing occurs decreases as the number of times the connection is labeled as unresponsive from
the detection algorithm increases.

8.3.6 Performance evaluation results
We evaluated the performance of the cognitive accountability mechanism by characterizing the
accuracy of the detection algorithm on one hand and the overal gain of the penalization actions
on the other hand. As network scenario, the network topology as presented in Section 8.3.3 was
used, consisting of two bottlenecks of which only 50% of the client terminals are affected by
the 20 Mbps bottleneck. We investigated the effect of the presence of both the AdaptiveIgnore
and IgnoreX type of unresponsive connections and varied both the share and the level of unre-
sponsiveness. In all experiments, the k parameter of the outlier detection algorithm was set to
5, as the DBScan clustering algorithm was configured to interpret a group of 6 instances as a
cluster. The J threshold in the fairness estimation step was set to 0.95. Due to the existence
of two bottlenecks this threshold was continuously exceeded: the efficiency of the detection
algorithm to cope with these multiple bottlenecks is thus also evaluated. Each test was repeated
20 times: the variations between iterations were due to variations in the probabilistic models
used to describe the inter-arrival time of requests and connection length.

97

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

Tr
ue

 p
os

iti
ve

s
ra

te

Time (sec)

30% connections Ignore100
30% connections Adaptive Ignore

(a) True positives

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

Tr
ue

 n
eg

at
iv

es
 ra

te

Time (sec)

30% connections Ignore100
30% connections Adaptive Ignore

(b) True negatives

Figure 8.8: True positives and true negatives as a function over the time for different unre-
sponsive connection types. Overall, the accuracy is always more than 90% and converges to
an accuracy of 100% over time. The number of false positives is considerably lower than the
number of false negatives.

Detection evaluation results

As the use of penalization has an impact on the dataset used for detecting the responsiveness
of connections, we disabled the penalization algorithm in this set of experiments. This allows
focusing on the accuracy of the detection algorithm avoiding any noise from errors in the de-
tection process. We characterized the detection accuracy as a function over time as well as
the impact of the share of unresponsive connections and the level of unresponsiveness in the
IgnoreX case.

Detection response times The accuracy of the detection algorithm over time is illustrated
in Figure 8.8, which shows the true positives rate (Figure 8.8(a)) and true negatives rate (Fig-
ure 8.8(b)) as a function over time. In two separate experiments, we introduced 30% unre-
sponsive connections: one of type Ignore100, i.e. ignoring all ECN messages, and one of type
Adaptive Ignore. As these graphs are similar to ROC curves, a true positives rate (respectively
true negatives rate) of 1 means that there aren’t any false positives (respectively false negatives)
generated by the detection algorithm. Unlike a ROC curve, we do not plot the true positives or
true negatives rate as a function of the sensitivity of the classifier but as a function of the time.

As discussed in Section 8.3.3, the first 600 seconds of this experiment define a start-up phase
where the bottleneck link of 100 Mbps is gradually being filled up to 400 connections. From
600 seconds onwards, new connections start, while older connections stop, keeping the ex-
pected number of connections fixed to 400. The results in Figure 8.8(a) show that the detection
algorithm generates almost no false positives: only in the first 400 seconds and in the case of
AdaptiveIgnore a number of connections are marked as unresponsive, while they are in fact re-
sponsive. Here, the true positives rate increases from 90% to 100%. The other unresponsiveness
type, Ignore100, does not suffer from any false positives over time.

The number of false negatives, as illustrated in Figure 8.8(b), is somewhat higher than the
number of false positives. Moreover, although the true negatives rate also converges to 100%,
the process goes slower, which means that there are some connections that are not detected as

98

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90

T
ru

e
 n

e
g

a
ti
v
e

s
 r

a
te

Share of unresponsive connections (%)

Adaptive Ignore
Ignore 70
Ignore 50

Figure 8.9: ROC Curve for the false negatives as a function of the share of unresponsive connec-
tions. The more unresponsive connections are present in the network, the higher the resulting
accuracy is.

unresponsive over a longer time period. The true negatives rate also features a higher bursti-
ness over time: around 300 Mbps the false negatives rate drops from 95% to 92.12% for the
Ignore100 case and 92.12% for the AdaptiveIgnore case. This drop in accuracy was visible in
each experiment and is because of the high unresponsiveness of the connections, which some-
times leads too high network loads, especially during the start-up phase. Similar drops were
visible in other experiments and happened there sooner or later depending on the share of unre-
sponsive connections.

Although the false negatives rate is lower than the false positives rate, in both types of unre-
sponsiveness, the accuracy is still more than acceptable: the lowest experienced true negatives
rate is 90.81%. Similar to the false positives rate, once the start-up phase is completed and
the number of connections is stabilized, the accuracy converges to 100% and newly arriving
connections can be mapped to the right label quickly. As the true negatives rate converges to
100% around 900 seconds, the impact of the EWMA algorithm, that averages the connection’s
CWR and ECE count, is also visible. Since we average with a weight equal to 0.99, there is a
delay before the accuracy converges to 100%: lower weight values resulted in smaller delays
but instable accuracies.

When comparing both types of unresponsive stacks, the results show that the Ignore100
stacks are easier to detect since the obtained true positives and true negatives rate are higher.
With respect to the true positives rate, no false positives even occur in the detection of unre-
sponsive Ignore100 stacks. This is because the AdaptiveIgnore connections are more subtle in
their responsiveness: since they continuously switch between responding to ECN signals (when
the queue is planning to drop packets) and not responding to ECN signals (when the queue is
not planning to drop packets). As such, AdaptiveIgnore connections introduce more noise into
the detection attributes, the CWR and ECE count, which complicate the clustering and impact
the overall accuracy.

Influence of the share of unresponsive connections Figure 8.9 illustrates the impact of an
increasing share of unresponsive connections in the network on the average true negatives rate
during the steady state (i.e. after 600 seconds). Here the true negatives rate of three unresponsive

99

Ignore50 Ignore70
1 connection 5 connections 1 connection 5 connections

True negatives (without outliers) 48.12% 68.24% 57.56% 69.01%
True negatives (with outliers) 74.62% 74.68% 84.47% 84.14%
True positives (with outliers) 97.57% 99.89% 98.37% 99.98%

Table 8.1: True negatives rate, with and without the detection of outliers, and true positives rate
for a varying share of unresponsive connections and unresponsive types.

connection types, AdaptiveIgnore, Ignore70 and Ignore50, are shown as a function of the share
these unresponsive connections have in the network. The share was varied by first introducing
unresponsive clients in the network subset with only one bottleneck and, for a share of 50% and
higher, also introducing unresponsive connections in the network subset with both bottlenecks.

While a stable accuracy of 100% can be obtained for the Adaptive Ignore case, regardless
of the share of Adaptive Ignore connections, the other 2 types of unresponsive connections,
Ignore50 and Ignore70, do suffer from a drop in accuracy when the share of unresponsive con-
nections is small. The reason for this is the following: although the Adaptive Ignore already
introduces more noise into the clustering attributes, its mean average accuracy still converges
to 100% as long as the attributes are thoroughly averaged over time. If only a fraction of ECN
messages are ignored, which is the case for the Ignore50 and Ignore70 cases, the introduced
noise is higher: for example, in the Ignore50 case, the connections can be regarded as being
unresponsive only 50% of the time. As a result, the cluster groups found by the detection algo-
rithm are positioned closer to each other, complicating the clustering process. If, additionally,
the number of unresponsive connections is small it is even harder for the detection algorithm to
determine whether these points belong to the cluster borders, or form a new cluster.

Because of this, the true negatives rate increases as the share of unresponsive connections
increases as well. If only one 1 to 10% of the connections are unresponsive the true negative
rate is 84,72%, for the Ignore70 case, and 74,62%, for the Ignore50 case. This increases for
a growing share to true negatives rates of 90% and higher when more than 50% of the con-
nections are unresponsive. Also note that, the gain of only a few unresponsive connections is
significantly lower than that of higher shares of unresponsive connections. This was discussed
in Section 8.3.1, which described the original problem.

To illustrate the need for the outlier detection algorithm, the algorithm that is specifically
intended to detect a small number of unresponsive connections, Table 8.1 illustrates the true
negatives rate with and without the outlier detection algorithm. As shown, the outlier detection
results in a significant gain in true negatives rate, up to 25%, because without the outlier de-
tection, most single unresponsive connections are not detected. Table 8.1 also shows the true
positives rate for the same share of unresponsive connection types. Similar to the previous re-
sults, it is shown that the number of false positives is considerably lower than the number of
false negatives. Even for the lowest shares of unresponsive connections, the true positives rate
is close to 100%.

Influence of the level of responsiveness The results in the previous section already indicated
that the level of responsiveness has an impact on the overall detection accuracy. This is illus-
trated in more detail in Figure 8.10 which shows both the true positives rate and false negatives
rate as a function of the level of responsiveness. In this case, 30% unresponsive connections

100

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80 90 100
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Tr
ue

 n
eg

at
iv

es
 ra

te

Tr
ue

 p
os

iti
ve

s
ra

te

Level of unresponsiveness (%)

True positives rate
True negatives rate

Figure 8.10: ROC Curve for the false negatives and false positives as a function of the level
of unresponsiveness. The level of unresponsiveness is varied by changing the ratio of ECN
messages that are ignored.

were introduced; the level of responsiveness was varied through unresponsive connections of
type IgnoreX, where the X was varied. Hence, by increasing the fraction of ECN messages that
are being ignored, the responsiveness is decreased.

As expected, an increasing unresponsiveness has an increasing effect on the accuracy in
terms of both the false positives and false negatives rate. The less ECN signals are ignored
by the unresponsive connections, the more these connections resemble regular - responsive -
connections. This means that it becomes harder to adequately detect such unresponsive con-
nections, but also for the unresponsive connections themselves to achieve an actual gain out of
being unresponsive.

Similar to the previous results, the true positives rate is again considerably higher than the
true negatives rate. While both feature a close to linear increase as the level of unresponsiveness
increases, an unresponsiveness of 50% and more results in a false positives rate of approxi-
mately 100% and remains stable as the unresponsiveness further increases. The true negatives
rate is also 100% when all ECN messages are ignored, but is considerable lower, i.e. 66.12%,
when only 10% of all ECN messages are ignored. While this latter true negatives rate is low,
the false negatives rate steadily increases: at 50% of unresponsiveness, the false negatives rate
is 79.91%. As will be detailed in the next section, this is the moment at which the unresponsive
connections start experiencing an actual gain of being unresponsive.

Penalization evaluation results While the previous section focused on an off-line detection
accuracy evaluation, in this section, we characterize the gain of of the complete system, in-
cluding the penalization action proposed in Section 8.3.5. Therefore, the detection algorithm
was deployed on-line and its output was provided to the penalization algorithm that includes
the exponential back-off algorithm with T initially set to 5 seconds. The connection monitor-
ing step generated an updated statistics value every second and also triggered, if needed, the
detection algorithm and, ultimately, the penalization action. We characterize the impact of pe-
nalization on both a limited and large connection set and investigate the influence of the level
of unresponsiveness.

101

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

M
e

a
s
u

re
d

 B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (minutes)

Responsive
connections

Unresponsive
connections

Figure 8.11: Influence of the penalization on the scenario described in Figure 8.2, representing
four responsive connections and one unresponsive connection. By applying penalization to the
unresponsive connection, the unfair throughput of the unresponsive connection is immediately
decreased, leading to an almost perfect fairness level.

Influence of the penalization on a limited connection set

In this experiment, the same settings as described in Section 8.3.2 were used, where 5 connec-
tions were forwarded over a 100 Mbps bottleneck. In this case, we penalized the unresponsive
connection that is started every 6 minutes once its unresponsiveness was detected by the cog-
nitive accountability mechanism. Figure 8.11 shows the corresponding measured bandwidth
of the unresponsive connection as well as the responsive connections. As can be seen, the in-
troduction of an unresponsive connection into a pool of responsive connections starts with a
similar behavior as experienced without penalization: the unresponsive connection is able to
achieve a much higher throughput than the responsive connections. However, unlike the case
without penalization discussed in Section 8.3.2, this unfairness does not last the complete length
of the unresponsive connection. Immediately after its introduction (i.e., approximately 10 sec-
onds later), the unresponsiveness of the connection is detected and penalized. This penalization
has a clear impact on the throughput of the connections and corresponding fairness. After the
initial unfair peak in throughput, the throughput of the unresponsive connection immediately
decreases to values that are similar to those obtained from the responsive connections. There-
fore, applying penalization allows to restore the fairness that should exist between connections,
even when the connections are highly unresponsive; the reaction speed is lower than 10 seconds.

Influence of the penalization on a large connection set To characterize the impact of the
penalization actions on a larger connection, we again use the gain metric, introduced in Sec-
tion 8.3.1. We use this metric and not the Jain’s fairness index introduced in Section 8.3.4
because the Jain’s fairness index does not take into account the knowledge we have about unre-
sponsive and responsive connections. Therefore, the gain metric provides a better understand-
ing of the actual unfairness between the two classes, instead of the global unfairness, where the
multiple bottlenecks also contribute to. Figure 8.12 illustrates the evolution of this gain value
over time, measured during the steady state of the experiment, thus ignoring the start-up phase.
In this experiment, 30% of the connections ignored all ECN messages (i.e. the Ignore100 type).
Furthermore, we turned the penalization action on after 100 seconds to identify the effect of

102

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400

A
c
h

ie
v
e

d
 g

a
in

 c
o

m
p

a
re

d
 t

o
 r

e
s
p

o
n

s
iv

e
 c

o
n

n
e

c
ti
o

n
s
 (

%
)

Time (sec)

enabling the
penalization

Without penalization

With penalization

Figure 8.12: Gain in terms of measured bandwidth of unresponsive connections versus respon-
sive connections over time, with and without penalization of unresponsive connections. The
penalization is turned on after 100 seconds. Applying penalization limits the gain of unrespon-
sive connections.

the penalization. Figure 8.12 shows both the gain with the penalization turned off completely
and turned on after 100 seconds, evaluated in two separate experiments. As shown, without any
penalization, the unresponsive connections achieve a gain of approximately 11.5%. This means
that the average throughput of the unresponsive connections is 11.5% higher than those of the
responsive connections.

By enabling the penalization of connections at 100 seconds, this gain slowly but steadily de-
creases over the course of 100 seconds. The ultimately achieved gain by enabling penalization
is close to zero but also more bursty than when no penalization is applied. This is because of
the exponential back-off algorithm that periodically probes to check if responsive connections
haven’t been misclassified as unresponsive. By moving these connections from the unrespon-
sive class to the responsive class again, unresponsive connections have the chance of achieving
a higher gain for a short period.

As time elapses, the achieved gain even decreases below zero with an average of approxi-
mately -2%. This is because the penalization action slightly favors the responsive connections
as they can still receive ECN warnings. Once the queue starts marking ECN packets, the re-
sponsive connections receive these warnings and can send a CWR message to ask the sender for
a small decrease in its transfer rate. The unresponsive connections, on the other hand, immedi-
ately experience data loss, which leads to a more drastic reduction in the sender rate (typically
through a multiplicative decrease algorithm). When the unresponsive connections ignore all
ECN warnings the cognitive accountability algorithm is thus able to restore the fairness be-
tween connections by decreasing the achieved gain of the unresponsive connections with more
than 12%.

Influence of the level of unresponsiveness

Figure 8.13 illustrates the average achieved gain for an increasing level of unresponsiveness.
Similar to the previous experiment, 30% of the connections were IgnoreX unresponsive con-
nections, where the value of X was varied. The results show that when more than 50% of all
ECN signals are ignored (i.e. the unresponsiveness is below 50%), the gain the unresponsive

103

-2

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

A
c
h

ie
v
e

d
 g

a
in

 c
o

m
p

a
re

d
 t

o
 r

e
s
p

o
n

s
iv

e
 c

o
n

n
e

c
ti
o

n
s
 (

%
)

Level of unresponsiveness (%)

Without penalization
With penalization

Figure 8.13: Influence of the level of unresponsiveness on the gain unresponsive connections
achieve, with and without penalization of unresponsive connections.

connections can achieve is negligible, being less than 2%. Because of the smaller true nega-
tives rates reported in Figure 8.10, the use of penalization is also not able to decrease this last
2% of gain, which makes that applying penalization has little effect for connections with an
unresponsiveness lower than 50%.

As the level of unresponsiveness increases up to a point where all ECN messages are ig-
nored, the achieved gain unresponsive connections obtain, if no penalization is applied, also
increases up to 11.5%. The cognitive accountability algorithm is able to respond to this by
penalizing the unresponsive connections. Instead of an increased gain, applying penalization
results in a slight decrease in gain until the unresponsive connections even have a disadvantage
compared to the unresponsive connections, illustrated through a negative gain value.

8.3.7 Conclusions
In this section, we presented a cognitive accountability mechanism that is able to restore the
fairness between TCP connections, originally affected by the presence of unresponsive TCP
stacks that (partially) ignore ECN congestion signals. The cognitive accountability mechanism
is deployed on top of a normal AQM enabled router and consists of a detection algorithm and
differentiated AQM mechanism. The detection algorithm monitors each connection passing
through the router and performs a combination of clustering and outlier detection based on
the monitored data. The detection algorithm maps the connections to different groups, called
profiles, that feature similar ECN behavior and labels each profile as responsive or unresponsive.
The output of the detection algorithm is used to perform a differentiated AQM behavior that
divides connections into a responsive and unresponsive class and penalizes the unresponsive
class by disabling the ECN support.

The cognitive accountability mechanism has been evaluated on a testbed facility emulating a
tree-based network topology with multiple bottlenecks and 400 client terminals. Different eval-
uation scenarios were introduced by varying the type of unresponsive connections, the share
of unresponsive connections and the level of unresponsiveness, featured by the unresponsive
connections. Both the accuracy of the detection algorithm and the achieved fairness gain of
the overall accountability mechanism has been characterized. The results show that, the detec-
tion accuracy depends on both the level and share of unresponsiveness. Moreover, a drop in

104

accuracy typically has an impact on the number of false negatives and not on the number of
false positives. As such, lower accuracy values only result in unresponsive connections being
classified as responsive connections and not the other way around. Overall, the detection accu-
racy is higher than 80% and often close to 100% in cases where the unresponsive connections
achieve an actual gain from being unresponsive. Furthermore, the results showed that penal-
izing detected unresponsive connections can successfully limit the gain unresponsive connec-
tions achieve compared to responsive connections to 2% and less. The more gain unresponsive
connections achieve by being unresponsive, the better unresponsive connections are penalized,
leading to better fairness values. Our experiments showed that unresponsive connections that
experience throughputs that are 5 times higher than their responsive counterparts, fall back to
the same throughputs of responsive connections by applying penalizations. Thus, the results
show that the clustering and outlier detection of ECN statistics of a flow provide a timely and
accurate detection of unresponsive ECN based TCP stacks. Moreover, the penalization of the
unresponsive connections does indeed lead to a better overall network fairness.

8.4 Unresponsive senders
In this section, we focus on the problem of unresponsive TCP senders. Different levels of re-
sponsiveness in terms of congestion warnings can cause different throughputs between the TCP
stacks, when all other network environmental settings are the same. As such, these differences
in throughput can violate the network fairness principle TCP tries to achieve.

Often, different responsiveness levels between TCP senders are a side effect of differences
in TCP dialects, which incorporate slight modifications to the original TCP congestion avoid-
ance algorithm. These modifications are often motivated because the different TCP dialects are
optimized for specific use cases (e.g., lossy links, delay tolerant networks). For example, an Ad-
ditive Increase Multiplicative Decrease (AIMD) TCP dialect such as TCP CUBIC will be less
aggressive in increasing the throughput than a Multiplicative Increase Multiplicative Decrease
(MIMD) TCP dialect such as Scalable TCP.

The goal of this section is to investigate how different responsiveness levels of different
TCP dialects have an effect on the flow characteristics. By investigating different attribute
sets of flow characteristic, a distinguishing attribute set can be selected between these different
TCP dialects. As such, this research serves as the basis for a metric that distinguishes between
different levels of responsiveness.

8.4.1 Experimental setup
Topology

In our experiments, we use two versions of the modeled topology: a virtual and physical topol-
ogy. The virtual topology is the one we wish for our emulation tests and maps to the physical
topology by grouping similar node functionality on one single physical node. The physical
topology is what we use to emulate it: the rationale behind these two different topologies is a
severe node reduction required for the experiments.

105

Figure 8.14: Example virtual network

Virtual topology

Figure 8.15 illustrates the used virtual network topology. The topology allows depicts a but-
terfly topology, where both wings represent servers or clients and are connected through one
central router. Each connection goes from a server to a client through this router, and all servers
and clients can be distinct (but need not be for all tests). There are bottlenecks possible that
affect a number of connections together (i.e. they go through the same router), upstream and
downstream from the router. Network delay both upstream and downstream from the router
can be distinct for each connection. The TCP stacks used on each server and client can be
configured.

Physical topology The physical topology as illustrated in Figure 8.14 is much simpler as
various virtual nodes are mapped to a physical node. We have a physical server for each TCP
stack, representing multiple servers, and a client for each TCP stack, representing multiple
clients. In between them, we have a Click Modular Router, which emulates the rest of the
network, including the central router.

106

Figure 8.15: Example physical network setup

Software Details

Client and Server Software To emulate client and servers, a simple custom software appli-
cation is used. This software creates a TCP connection between 2 hosts, and sends data at the
maximum speed possible over this connection. The software can be configured to exit when
a number of bytes have been sent, or a certain time has passed. This byte and time limit is
configurable.

Network Monitoring Software Network traffic is monitored using software that uses the
PCAP library. This software monitors the bandwidth consumed per user over specified periods
of time. It also distinguishes and can filter on certain traffic parameters. The monitor node is
connected directly to the Click Router, and receives a copy of all packets from it. This includes
dropped packets, which are marked (by setting IP TTL to zero). This allows us to measure the
exact amount of lost packets with the monitoring tool.

TCP Stacks In our experiments, we have used two different stacks, which correspond with
two families of TCP stacks:

• Additive Increase, Multiplicative Decrease (AIMD) stacks is a family of TCP stacks that
features a linear growth of the congestion window when no congestion warnings are ob-
served. For this family of stacks, we used the TCP CUBIC stack implementation, which
is the default stack used by the Linux kernels 2.6.19 and above.

• Multiplicative Increase, Multiplicative Decrease (MIMD) stacks is a family of TCP stacks
that features an exponential growth of the congestion window when no congestion warn-
ings are observed. For this family of stacks, we used the Scalable TCP stack implemen-
tation.

Both CUBIC TCP as Scalable TCP are explicitly designed for use in high speed networks.
However, Scalable TCP is far less aggressive in increasing its congestion window, which allows
it to increase a higher throughput. The goal of the experiments is to find a metric that allows

107

detecting this different behavior only if the difference in throughput is due to the higher aggres-
siveness of Scalable TCP. Both TCP stacks used are the Linux implementation versions of these
stacks.

Click: Router with RED queue Emulation The Click Router emulates a RED queue using
a modification of the default click RED element. This element is configured with the following
RED parameters:

Minimum Threshold 300 packets

Maximum Threshold 100 packets

Queue Length 600 packets

Maximum Probability 0.02

Stability 9

Click: Network Emulation The Click Router emulates a complex network, with bottlenecks
and delays before and after the RED queue. A combination of packet filters (to separate packets
per client and server), delay adders and bandwidth limiters is used to implement this.

Virtual wall and WExO Experiments where performed on the IBBT virtual wall, an infras-
tructure to create network testbeds. We used WExO, a tool set to create and manage virtual wall
experiments. WExO was explained in detail previously in deliverable D3.4.

Experimental settings

The goal of the tests is to discover a method to detect ”unfair” connections on an intermediate
router. We will refer to this router as the ”ECODE router”. The term ”unfair connections”
refers to any TCP connection that does not act ”fair” in the given network situation, and thus
uses more bandwidth then it should. A number of typical network situations can cause traffic
patterns similar to those of unresponsive stacks, so we need to distinguish those patterns from
the ones caused by unresponsive stacks.

We will focus mostly on bandwidth consumption per connection. An unfair connection
generally uses more bandwidth on average than a responsive one. Network situations such as
bottlenecks and delay will also impact bandwidth per connection.

Our basic tests are:

• First test a scenario with a chosen number of unfair connections.

• Secondly, test the same scenario, without unresponsive stacks, but with a network situa-
tion that causes the same average bandwidth usage.

Then, examine the measured data and search a metric that can distinguish these 2 cases. For
this, we focus on the introduction of server bottlenecks that cause the same average bandwidth
usage. Note that there are other aspects that may cause these differences in bandwidth usage.
We will discuss these in the remainder of this section, as part of future work.

108

Server Bottlenecks We will try to distinguish bottlenecks between the server and the ECODE
router, and unresponsive stacks by enabling or disabling a bandwidth limitation (bottleneck) on
the servers. This process works as follows: First we test without a bandwidth limitation. We
start with an equal amount of CUBIC and Scalable TCP connections. We will notice that that
the total average bandwidth of the Scalable TCP connections is higher than the total average
bandwidth of the CUBIC TCP connections. In the second test, we use only CUBIC TCP con-
nections, but we apply a server bottleneck to half of them, so they use only as much bandwidth
as the fair connections in the previous case.

Parameters to vary as part of future work The results described in this deliverable focus
mainly on the mechanism of varying the server bottleneck. As part of future work, we will do
variations on the previous tests. The idea is to create a large number of tests, in which there
are either Scalable TCP connections, or not, following a similar approach as explained above.
Various combinations of parameters will be tested, such as connection duration, connection
startup, share of Scalable TCP connections, etc. The chosen metric should be robust against
these parameter variations. Some important parameter variations that should be investigated in
future work are:

• Network delay: as the throughput of TCP is known to be inverse proportional with the
Round Trip Time (RTT), the network delay is one of the parameters that should be varied.
For this, we will use a similar approach as the one described in the previous section.First
we test without a difference in network delay. We start with an equal amount of fair and
unfair connections. We will notice that that the total average bandwidth of the unfair
connection is higher then the total average bandwidth of the fair connections. In the
second test, we use only fair connections, but we apply a network delay to half of them,
so they use only as much bandwidth as the fair connections in the previous case. To do
this we will evaluate a number of delay settings.

• Unfair connection mechanism: besides using the CUBIC TCP and Scalable TCP connec-
tions, other unresponsive and aggressive stacks can exist. For example, similar defective
stacks as the ones discussed in the previous section can be used as well.

• RED settings: RED settings can also have a severe impact on the congestion behavior.
Differences in these settings should also be investigated.

• Connection length: Currently, the connections are homogeneous. A study of heteroge-
neous connections is also required.

• The current study focuses on downstream connections from server to clients. However,
two-way traffic may also influence the connection’s throughput.

8.4.2 Results description
In order to distinguish the two scenarios, the following attributes per connection are monitored
during the experimental network tests over a time period of 10 minutes.

• Flow packet (FP) rate (# flow packets / 100 ms)

109

(a) Box and whisker diagram (CUBIC TCP) (b) Box and whisker diagram (Scalable TCP)

Figure 8.16: Box and whisker diagram for the different FP rates for CUBIC and Scalable TCP.

• Congested packet (CP) rate (# congested packets (i.e., packets that are ECN-marked) /
100 ms)

This 10 minutes time frame is subdivided into 4 separate time intervals, resulting in 4 dif-
ferent phases.

• Interval 1 [0 – 2.5 min] : interval when TCP connections are started (start-up phase)

• Interval 2 [2.5 – 5.0 min] : interval when TCP connections are generating traffic (station-
ary phase)

• Interval 3 [5.0 – 7.5 min] : interval when some TCP connections are added & stopped
(non-stationary phase)

• Interval 4 [7.5 – 10.0 min] : interval when TCP connections are stopped (cool-down
phase)

Figures 8.16(a) and 8.16(b) show a box-and-whisker diagram of the different FP rates for
all the TCP connections in the case without bottleneck. Such a diagram depicts the sample
minimum, lower quartile, median, upper quartile and sample maximum of TCP connections
that are active in the stable phase (interval 2). Fig. 8.16(a) shows a diagram for TCP CUBIC
connections, whereas Fig. 8.16(b) shows the result for the Scalable TCP connections. It is
seen from the data that the CUBIC and Scalable TCP connections behave differently, and that
they can easily be distinguished e.g. by comparing the skewness of the data, the length of the
whiskers (dispersion of the data), and/or the median and mean of the sample set.

Figs 8.17(a) and 8.17(b) show similar diagrams for the CP rate. It is shown that this attribute
provides less information, since most of the time, there is little or no congestion. Also, the CP
rate varies in discrete steps of 10 CP/100 ms. Note however that the Scalable TCP connections
have a higher average CP rate, due to the occurrence of a higher number of outliers (not visible
in the figures, due to superposition of the markers). Based on these diagrams, it is expected that
the FP rate is probably a more insightful attribute than the CP rate.

110

(a) Box and whisker diagram (CUBIC TCP) (b) Box and whisker diagram (Scalable TCP)

Figure 8.17: Box and whisker diagram for the different CP rates for CUBIC and Scalable TCP.

(a) Median (b) Mean

Figure 8.18: Median and mean FP rate vs. CG rate.

Since the median of the packet rates is substantially different for the CUBIC and Scalable
TCP connections, it seems natural to select these variables as valid attributes for a potential
clustering algorithm. As shown in Fig. 8.18(a) , there are two separate clusters that correspond
exactly to the set of CUBIC and Scalable TCP connections. Due to the low congestion, it
suffices to consider only the median FP rate, because the median CG rate is 0 for all TCP
connections. One can take this variable explicitly into account by considering the mean FP rates
and the (non-zero) mean CP rates as shown in Fig. 8.18(b) , as this leads to similar conclusions.

Note however that the goal is not to make a distinction between CUBIC and Scalable TCP
connections, but to distinguish the case of unresponsive stacks, where more unresponsive Scal-
able TCP connections receive an actual unfair bandwidth compared to their more responsive
CUBIC counterparts. In case, that a bottleneck has been placed between the server and the
ECODE router a similar difference in throughput can be observed. The goal of the experiments
is to find these attributes that can distinguish between these two scenarios. As an example, sim-

111

(a) Box and whisker diagram (CUBIC TCP) (b) Box and whisker diagram (Scalable TCP)

Figure 8.19: Box and whisker diagram for the different FP rates of CUBIC TCP and Scalable
TCP. In this case, an additional bottleneck has been placed on the server, which diminishes the
differences in unresponsiveness between the connections.

ilar box-and-whisker diagrams are made for a scenario in where the Scalable TCP connections
are behind an additional bottleneck of 160Mbps and the CUBIC TCP connections are behind
a bottleneck of 40Mbps. This difference in throughput (160 Mbps vs 40 Mbps) is the same
throughput difference one can observe without such a bottleneck and only the interaction be-
tween the unresponsive Scalable TCP and the more responsive CUBIC TCP connections. Fig.
8.19(a) and 8.19(b) illustrate that the shape of the distributions is similar. Using the median or
mean FP and CG rates accurately separates the CUBIC and Scalable TCP connections, however
it also leads to a set of 2 distinct clusters with a comparable mutual positioning as shown in Fig.
8.20(a) and 8.20(b) . This is not the desired behavior for an accurate responsiveness metric:
as in this case, the differences in throughput are due to an server bottleneck, the attributes should
not be able to distinguish between these two type of connections. Experimental results indicate
that actual differences between the results (e.g. size of clusters, distance between clusters, . . .)
are mainly caused by changes in the network topology. A further analysis is given in the next
section.

Approach 1 : Clustering TCP connections based on values of packet rates In order to
quantify any statistically relevant information between the two difference cases, the following
approach is considered. Each attribute constitutes a time-dependent trace of real values, de-
scribing flow packet (FP) rate or congested packet (CP) rate of the individual TCP connections.
In order to deal with the temporal behavior of the data, it is investigated if the time-dependent
behavior of the flows can be characterized by a statistical distribution that denotes the prob-
ability that one of the attributes (acting as a random variable) takes certain values over time.
The goal is then to replace the time-dependence of the attribute by estimated parameters of the
distribution, and then to use a cluster-based analysis to distinguish the two cases using these
parameters of the distribution.

Step 1 : Fit statistical distribution that best describes the data
A closer inspection of Fig. 8.16(b) indicates that the statistical distribution of FP rate for the

Scalable TCP connections appear to be substantially different. Therefore, the probability that

112

(a) Median (b) Mean

Figure 8.20: Median and mean FP rate vs CG rate.

certain packet rates occur over time is unlikely to be the same for each individual connection.
The FP rates of the CUBIC TCP connections appear to behave in a more consistent way, so
it will first be investigated which statistical distribution would be the most appropriate one to
fit the data. A wide range of 60 statistical distributions is considered and their parameters are
optimized in such a way that the distribution of the FP rates over time is matched as closely
as possible. Note that this requires an accurate estimation of distribution parameters. For this
purpose, different methods are used, such as the maximum-likelihood estimation, the methods
of moments and a least-squares approach. An overview of the considered statistical distributions
is given in Table 8.2, as well as their estimated parameters.

113

Table 8.2: Fitting results
Distribution Parameters KS test (D) KS test (Rank) AD test (A2) AD test (rank)
1 Beta α1=3.0774 α2=8.448 a=130.0 b=1350.0 0.06765 16 8.117 23
2 Burr k=1.5113 α=4.6837 β=492.29 0.0552 4 2.3412 1
3 Burr (4P) k=0.65494 α=0.7031 β=13.733 γ=130.0 0.62131 57 891.87 56
4 Cauchy θ=81.522 µ=432.21 0.09062 28 21.768 38
5 Chi-Squared ν=455 0.36835 50 3141.7 57
6 Chi-Squared (2P) ν=11445 γ=-10989.0 0.10431 34 12.047 27
7 Dagum k=134.97 α=3.4883 β=16.61 0.95562 59 7209.6 59
8 Dagum (4P) k=2.3996 α=0.28607 β=0.48911 γ=130.0 0.58527 56 706.23 55
9 Erlang m=8 β=51.03 0.17437 43 80.767 41
10 Erlang (3P) m=8 β=52.22 γ=19.396 0.09893 31 14.762 33
11 Error k=1.1792 θ=152.5 µ=455.75 0.10135 32 14.735 32
12 Error Function h=0.00464 0.89759 58 6235.0 58
13 Exponential λ=0.00219 0.37641 51 322.32 49
14 Exponential (2P) λ=0.00307 γ=130 0.29149 48 205.69 46
15 Fatigue Life α=0.34351 β=430.33 0.07011 18 5.2589 19
16 Fatigue Life (3P) α=0.24459 β=596.19 γ=-158.27 0.05872 8 2.9723 8
17 Frechet α=3.5954 β=367.14 0.13789 42 39.693 39
18 Frechet (3P) α=1.9700E+8 β=2.5363E+10 γ=-2.5363E+10 0.06236 12 4.6541 17
19 Gamma α=8.931 β=51.03 0.06274 13 3.5198 13
20 Gamma (3P) α=8.3561 β=52.22 γ=19.396 0.06091 10 3.2126 9
21 Gen. Extreme Value k=-0.06823 θ=127.33 µ=390.35 0.05422 2 2.7718 5
22 Gen. Gamma k=1.006 α=9.0541 β=51.03 0.06312 14 3.2279 10
23 Gen. Gamma (4P) k=0.91854 α=10.313 β=35.108 γ=8.679 0.06099 11 3.2413 12
24 Gen. Pareto k=-0.5498 θ=328.71 µ=243.65 0.08223 26 341.1 50
25 Gumbel Max θ=118.91 µ=387.12 0.07108 19 4.7059 18
26 Gumbel Min θ=118.91 µ=524.38 0.17643 45 88.156 43
27 Hypersecant θ=152.5 µ=455.75 0.10366 33 13.462 29
28 Inv. Gaussian λ=4070.3 µ=455.75 0.0671 15 4.5374 15
29 Inv. Gaussian (3P) λ=10333.0 µ=618.2 γ=-162.45 0.10645 38 13.713 31
30 Johnson SU γ=-2.3472 δ=2.6444 λ=259.24 ξ =174.84 0.05468 3 2.4079 2
31 Kumaraswamy α1=2.2425 α2=312.4 a=126.18 b=4948.1 0.07603 24 7.5506 22
32 Laplace λ=0.00927 µ=455.75 0.10533 36 19.861 37
33 Levy θ=406.38 0.50071 55 504.13 54
34 Levy (2P) θ=239.72 γ=124.58 0.4278 54 356.46 51
35 Log-Gamma α=322.07 β=0.01884 0.07558 23 5.913 20
36 Log-Logistic α=5.3116 β=430.84 0.0722 20 3.6273 14
37 Log-Logistic (3P) α=6.657 β=543.35 γ=-106.39 0.05356 1 2.4428 3
38 Log-Pearson 3 α=45.925 β=-0.04988 γ=8.3573 0.0608 9 3.2399 11
39 Logistic θ=84.079 µ=455.75 0.10495 35 11.603 26
40 Lognormal θ=0.33793 µ=6.0665 0.06822 17 4.581 16
41 Lognormal (3P) θ=0.24616 µ=6.3761 γ=-150.02 0.05734 7 2.8286 7
42 Nakagami m=1.9589 &=2.3095E+5 0.07292 21 13.486 30
43 Normal θ=152.5 µ=455.75 0.10647 39 12.972 28
44 Pareto α=0.83405 β=130 0.39128 52 359.67 52
45 Pareto 2 α=105.99 β=43680.0 0.40939 53 373.06 53
46 Pearson 5 α=8.6075 β=3497.9 0.09028 27 10.812 25
47 Pearson 5 (3P) α=29.277 β=22387.0 γ=-336.0 0.05638 6 2.7148 4
48 Pearson 6 α1=204.92 α2=9.0156 β=17.925 0.09143 29 10.643 24
49 Pearson 6 (4P) α1=25.733 α2=36.039 β=782.93 γ=-119.7 0.05626 5 2.8059 6
50 Pert m=346.7 a=130.0 b=1350.0 0.11596 40 55.1 40
51 Power Function α=0.65383 a=130.0 b=1350.1 0.33609 49 279.08 47
52 Rayleigh θ=363.64 0.1758 44 87.72 42
53 Rayleigh (2P) θ=254.83 γ=129.2 0.09328 30 17.156 35
54 Reciprocal a=130.0 b=1350.0 0.24623 47 199.65 45
55 Rice ν=424.44 θ=159.37 0.07465 22 14.774 34
56 StudentÕs t ν=2 0.99997 60 17187.0 60
57 Triangular m=156.0 a=130.0 b=1350.0 0.24023 46 160.57 44
58 Uniform a=191.61 b=719.89 0.1166 41 311.28 48
59 Weibull α=3.7174 β=502.95 0.10552 37 17.779 36
60 Weibull (3P) α=2.2622 β=371.51 γ=126.38 0.07608 25 7.1075 21

Step 2 : Use a statistical test to determine the goodness-of-fit
The goodness of fit tests measures how well a hypothesized distribution function matches

the population of packet rate samples that were monitored over time. In this case two measures
were considered to assess the goodness of fit : the Kolmogorov-Smirnov test statistic (D) and
Anderson-Darling test statistic (A2).

1. The Kolmogorov-Smirnov test statistic computes the largest vertical difference between
a theoretical cumulative distribution F(x) and the empirical cumulative distribution func-
tion Fn(x) derived from data

D = sup
x
|Fn(x)−F(x)|

2. The Anderson-Darling test statistic compares the fit of an observed cumulative distribu-
tion function to an expected cumulative distribution function. This test gives more weight

114

(a) Histogram of empirical data & PDF of Log-
Logistic (3P) distribution

(b) Comparison of cumulative distribution function
(Log-Logistic 3P)

Figure 8.21: Histogram and cumulative distribution functions.

to the tails than the Kolmogorov-Smirnov test statistic. If the data samples x1 < ... < xn
are ordered, then the Anderson-Darling test statistic (A2) is defined as follows

A2 =−n−
n

∑
k=1

2k−1
n

[lnF(xk)+ ln(1−F(xn+1−k))]

Table 8.2 shows the results of both the D and A2 test statistics and the corresponding ranking
for an arbitrary CUBIC TCP connection. It turns out that both statistical tests yield somewhat
different results, however some distributions are obviously more suitable than others (see e.g.
the three-parameter Log-Logistic distribution, the Johnson SU distribution, or a Burr distribu-
tion). By comparing a histogram of the empirical data with the probability density function of
the Log-Logistic distribution (Fig. 8.21(a)) and by inspecting the cumulative distribution func-
tions (Fig. 8.21(b)), it is seen that a fair agreement is obtained, showing that this distributions
is suitable to fit empirical data that is “nearly Gaussian”.

In order to determine the statistical relevance of this outcome, the null hypothesis (H0) and
alternative hypothesis (HA) are defined are follows :

• H0 : the data follows the specified distributional form

• HA : the data does not follow the specified distributional form

The null hypothesis H0 regarding the distributional form is rejected if the test statistic, D
or A2, is greater than the critical value obtained from a table at a certain significance level α .
(Note that there are several variations of these tables in the literature that use somewhat differ-
ent scalings for the Kolmogorov-Smirnov test statistic and critical regions. These alternative
formulations should be equivalent, but it is ensured that the test statistic is calculated in a way
that is consistent with how the critical values were tabulated).

Table 8.3 lists the critical values for the statistics calculated for various significance levels
(α), as well as the acceptance of the null hypothesis for each of the level values. It turns out that

115

Table 8.3: Goodness of fit statistics (Log-Logistic 3P)
Log-Logistic (3P) [#37]
Kolmogorov-Smirnov
Sample Size 1501
Statistic 0.05359
P-Value 3.4608E-4
Rank 1
a 0.2 0.1 0.05 0.02 0.01
Critical Value 0.0277 0.03157 0.03505 0.03918 0.04205
Reject? Yes Yes Yes Yes Yes
Anderson-Darling
Sample Size 1501
Statistic 2.4428
Rank 3
a 0.2 0.1 0.05 0.02 0.01
Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074
Reject? Yes Yes No No No

the null hypothesis H0 is rejected at the 5% significance level using the Kolmogorov-Smirnov
test for all distributions that were considered, even the ones that are highest ranked. Since
it cannot be rejected at the 5% significance level using the Anderson-Darling test statistic, a
similar analysis is performed on the other CUBIC TCP connections. It turns out that the ranking
of distributions according to the goodness-of-fit statistics is substantially different for each TCP
connection, even if only the CUBIC TCP connections are considered. Therefore, it is concluded
that the packet rates which are gathered for the different TCP connections do not follow a single
distributional form with acceptable statistical relevance.

Approach 2 : Clustering TCP connections based on increments of packet rates A limita-
tion of the previous approach is that it relies on the probability that one of the attributes takes
certain values over time, without taking the order of these values over time into account. Rather
than analyzing the individual values of the FP rate and the CP rate, the increment or decrement
(∆FP(t) and ∆CP(t)) between successive time frames is considered. This concept is closely
related to the responsiveness and aggressiveness metrics of the TCP connections.

∆FP(t) =
FP(t)−FP(t−1)

∆t

∆CP(t) =
CP(t)−CP(t−1)

∆t

Note that the increments can also take negative values (i.e. the increment is a so-called decre-
ment). Figs. 8.22(a) and 8.22(b) show a box-and-whisker diagram of the different FP incre-
ments for all the TCP connections in the case without bottleneck. It shows that the interquartile
range of the Scalable TCP connections is much larger than the interquartile range of the CUBIC
ones. This corresponds to the intuition that the Scalable TCP connections are more aggressive

116

(a) CUBIC TCP (b) Scalable TCP

Figure 8.22: Box and whisker diagrams for FP increments (without server bottleneck).

than CUBIC TCP connections. Also here, the CP increments appear to be less meaningful,
since the interquartile range was 0 for all connections.

The distribution of the increments was also compared with the case of various bottleneck
scenarios. For a case where the bottleneck was perfectly aligned with the observed throughput
values. The distribution of the increments is similar in the bottleneck case and completely
different in the non-bottleneck case. This indicates that the average length increment seems a
potential good candidate for distinguishing between the two considered families of TCP stacks.
However, in other cases, where the number of connections differs, see e.g. Figs. 8.23(a) and
8.23(b) for a scenario where 12 CUBIC connections are behind a server bottleneck of 40 Mbps
and the other 36 Scalable TCP connections are behind a 170 Mbps server bottleneck, it was
found that the connections behave again in a similar way as in the case without a bottleneck.
Using a similar procedure along the lines of Approach 1, it was found that the increments also
do not provide a conclusive answer to distinguish all the bottleneck cases in a consistent way.

Further study is needed to draw conclusions out of these results. More specifically, in future
work it is needed to gain insights in the level of differences in throughput a different share of one
connection over the other entails. If this difference is small, i.e. the connections are rather fair,
than the observed similarity in the distribution between increments in Figures 8.22(a), 8.22(b),
8.23(a) and 8.23(b) are less of an issue and the distribution of increments can be used as a
potential metric candidate. If not, the metric should be rejected.

Approach 3 : Auto-covariance of the packet rates It has been investigated if the auto-
covariance of the packet rates can be used to distinguish both cases. Given a FP of CP rate, the
auto-covariance is defined as the covariance of the attribute with itself, i.e. the variance of the
attribute against a time-shifted version of itself. If the attribute has mean E[FP(t)] = µt , then
the auto-covariance CFP(t,s) with s = t + τ is given by the formula

CFP(t,s) = E[(FP(t)−µt)(FP(s)−µs)]

= E[FP(t)FP(s)]−µt µs

117

(a) CUBIC TCP (b) Scalable TCP

Figure 8.23: Box and whisker diagrams for FP increments (with server bottleneck).

(a) Without server bottleneck (b) With server bottleneck

Figure 8.24: Auto-covariance CFP versus CCP with and without server bottleneck.

Since the probability distribution does not change when shifted in time, the process is stationary
and µt = µs = µ . Hence,

CFP(τ) = E[FP(t)FP(t + τ)]−µ
2

A calculation of the auto-covariance CFP(τ) and CCP(τ) for all the TCP connections in the
case of a bottleneck results in a set of data points that are scattered without a clear formation
of clusters (see Fig. 8.24(a) and 8.24(b) for an illustration with τ = 1). In the case of a bot-
tleneck scenario (i.e., Scalable TCP connections experience a server bottleneck of 180 Mbps
and CUBIC TCP connections experience a server bottleneck of 40 Mbps), a comparable set of
scattered data points is obtained which does not provide a comprehensive pattern to distinguish
both cases.

Approach 4 : Fourier transforms of the packet rates A set of N equispaced time domain
packet rate samples {tn,FP(tn)}N

n=1 is transformed into a sequence of N equispaced frequency

118

domain packet rate samples {ωk,FP(ωn)}N
n=1 using the discrete Fourier transform.

FP(ωk) =
N

∑
v=0

FP(tv)e−(j2π/N)kv for k = 0, ...,N−1

The frequency domain packet rate samples FP(ωn) are located at the discrete frequencies ωk =
k/(N∆t) where ∆t denotes the time step. Therefore, they are equally spaced over a given fre-
quency range [0,ωmax], where ωmax corresponds to the maximum frequency (N − 1)/(N∆t).
Since the FP(ωn) rates are complex-valued, it offers various potential attributes that can be used
in a clustering algorithm, such as the real or imaginary part of FP(ωk), as well as the amplitudes
and phase component. Experimental results have shown that some of these attributes lead to
a clustering of CUBIC and Scalable TCP connections in the frequency domain. Nevertheless,
an application of the Fourier transform involves a lot of intricacies, e.g. the Fourier transform
may require a long record of the packet rates in the time domain to ensure a sufficient frequency
resolution, as zero-padding can lead to inaccurate results. This means that the length of the time
interval plays an important role, and also the time step ∆t has an influence on the results as it is
directly related to the bandwidth of the FP(ωk) rate. Therefore, further analyses are needed to
assess the potential of this approach.

8.5 Conclusions
We investigated several approaches to find a good attribute set that (i) is able to distinguish be-
tween AIMD and MIMD TCP stacks which are known to have different levels of aggressiveness
and thus lead to significant throughput differences and (ii) does not distinguish between these
stacks when there is not a difference in throughput or if the throughput difference is not due to
the difference in aggressiveness but due to other factors such as the existence of a bottleneck.
While tens of attribute sets were studied during this project, this deliverable focuses on the best
4 candidates found so far: a mapping on a statistical distribution, a distribution of increments,
the auto-covariance and a translation to the frequency domain. We have shown that these at-
tribute sets show promising results in achieving the desired behavior but are - at the same time
- very prone the parameter fluctuations.

Due to the large problem domain, further study is needed to investigate the performance of
these 4 candidate attribute sets. Therefore, future work will focus on a better exploration of the
problem domain by taking two research directions. In the first research direction, it is necessary
to better characterize the throughput differences between the stacks and to come up with a
metrics that can characterize whether or not the differences in throughput are tolerable or not.
In the second direction, the various parameters that can have an effect on the throughput (round
trip time, heterogeneity of the connections, etc.) should be varied in more detail to investigate
the robustness of the candidate attribute sets.

119

Chapter 9

Conclusion

This deliverable reports on the experimental evaluation of the machine learning engine by means
of representative use cases and execution scenarios. Each of the experimental scenarios is used
to perform functional and performance validation thanks to the definition of validation criteria
and metrics defined in deliverable D4.1.

As conclusion, we summarize the properties of the machine learning engine (whose design
is detailed in deliverable D2.3) as validated by experimentation:

Accuracy Accuracy appears as both monitoring accuracy (monitoring data matches actual
traffic and events, or matches third-party monitoring traces) as well as detection and prediction
accuracy (detection rates, number of false positives, etc.).

• Monitoring accuracy

– Running monitoring applications based on adaptive sampling provides network sta-
tus estimation accuracy measures, i.e., adaptive sampling lead to accurate estimation
of actual network status.

– Validation of the accuracy of the monitoring underlying the Anomaly Detection Sys-
tem, namely the NEWNADA system is achieved by means various datasets (MAWI,
METROSEC, etc.) and its comparison against actual traffic where a monitoring card
is used as base-line monitoring tool.

• Detection accuracy

– Evaluation of the anomaly detection accuracy has been performed by means of the
NEWNADA system by examining its resulting detection rates, false positive/nega-
tive rates, and rate of undetected attacks and their comparison with traffic traces.

– Detection accuracy of path exploration events, as well as false positives and false
negatives can be observed from the results obtained when applying sequential learn-
ing to on-line BGP data.

• Prediction accuracy

– The path availability and performance service (IDIPS) does not lead to prediction
accuracy issues (as IDIPS itself does not perform actual predictions). Nevertheless,

120

the way the measurement module is implemented can have an impact on the quality
of the measurement and, subsequently on the prediction accuracy.

– DMFSGD (Decentralized Matrix Factorization based on Stochastic Gradient De-
scent), a novel Network Coordinate Systems (NCS) enables to predict unknown
network performance metrics (typically delay, available bandwidth) from a rela-
tively small number of measurements between some pairs of nodes. Using different
criteria, the proposed DMFSGD algorithm either outperforms or is competitive to
Vivaldi (the only coordinate system that has been adopted in a real Internet applica-
tion).

– Prediction accuracy of shared risk groups, defined as rate of correct predictions,
false positives and false negatives has been reported for SRGs containing up to 10
elements (depending on the overlapping of links between SRGs).

Correctness The usage of a machine learning algorithms impacts the correctness of the out-
come and actions of networking techniques. The machine learning engine can be used to pro-
vide faster, more scalable solutions, in which case the outcome may suffer in correctness. Alter-
natively, the objective of using the machine learning engine to run machine learning algorithms
may lie in reaching functionality that performs better than traditional techniques; in this case
correctness is a performance metric.

• Correctness as requirement: the correctness of selected path and AS-paths may be im-
pacted by the removal of BGP path exploration sequences.

• Correctness as performance gain: in the context of the evaluation of the Anomaly De-
tection System, correctness refers to the ability of the ADS to detect unknown (0-day)
anomalies.

• Higher correctness (shorter paths) is reached by finding routing shortcuts which can be
found from the NCS using a triangular inequality violation detector.

Timing Timeliness of actions triggered by the machine learning engine output generally has
a direct impact on network user experience. Reaction times, recovery times and detection times
are the main performance metrics considered. Timing may be related to stability.

• For monitoring applications based on adaptive sampling, this time refers to the reaction
time needed to readjust configuration of the monitors.

• A proof-of-concept has been setup to compare recovery times for normal OSPF and SRG
inference enhanced OSPF. The timing behavior has been examined using packet traces,
in order to determine the duration of interruption of the video streams. In the latter case,
when locally detecting one of the failing links, all SRG links (and thus all streams) ben-
efit from fast detection, allowing up to sub 25 ms recovery of the video streams in the
demonstration setup.

• Detection time of path exploration events in intimately related to instability as demon-
strated using RouteView BGP datasets.

121

Stability Stability can be expressed against a number of performance metrics.

• IDIPS is stable over transactions, as no drift is observed. As expected, the larger the
number of destinations, the less stable the service time as suggested by the service time
distribution amplitude.

• Off-line experiments have shown the stability of the inferred SRG sets in terms of predic-
tion accuracy over time (i.e., total number of recorded failures).

Scalability Scalability can be expressed against a number of performance metrics. Also scal-
ability is expressed against one or more scenario parameters (e.g., topology, input traffic).

• Adaptive sampling is scalable by definition as the system automatically adapts itself to
the resource constraints. The experimented system is also scalable in terms of number of
monitoring tasks and network topology.

• IDIPS experiments show that the time spent in the whole ranking process increases lin-
early with the number of paths from the requests. As expected, the capacity of IDIPS to
process requests decreases with the request size. It is expected behavior as large requests
require more processing time, in terms of IDIPS (typically more cost function to evaluate
and, thus, more lookups into the predicted values storage) and internal XORP processing.

• For a network comprising n nodes, the size of the SRG table (in bytes) is O(n4). Generally
however, only SRGs that have been observed will be stored in the SRG table.

• Run-time memory cost in BGP updates processing scalability in terms of memory usage,
number of prefixes and attributes can be improved by means of BGP messages filtering.

• In the ALFA fast re-routing technique, the alternate FIB (aFIB) stored at each node is
initially a copy of the primary FIB (pFIB) which by default doubles the size of the FIB.
Several improvements can be applied: i) after configuration, the forwarding entries for
which the primary and the alternate next-hop for the same destination are identical can be
removed from the aFIB, ii) aFIB entries can be aggregated (at the expense of additional
processing to perform aFIB updates).

• The clustering algorithm of the Unsupervised Analysis module performs multiple cluster-
ings in N = m(m−1)/2 low-dimensional sub-spaces Xi ⊂ X . This multiple computation
imposes scalability issues for on-line detection of attacks in very high-speed networks.
Two key features of the algorithm are exploited to reduce scalability problems in num-
ber of features m and the number of aggregated flows n to analyze: i) clustering in very
low dimensional sub-spaces, Xi ∈ R2, which is faster than clustering in high-dimensional
spaces, and ii) each sub-space can be clustered independently of the other sub-spaces,
which is perfectly adapted for parallel computing architectures. Moreover, parallelization
can be considered to improve NEWNADA does not use parallelization (each sub-space
is sequentially analyzed, one after the other). Indeed, parallelization can significantly
improve the computational time of NEWNADA, and therefore increases the volume of
traffic that can be monitored in an on-line basis.

122

Overall, the experimentation of the learning modules by means of the machine learning
engine has been successfully conducted by means of the ECODE Unified Architecture (EUA)
proposed in deliverable D2.2. Indeed, the experimental results obtained show that such a plat-
form can host different learning modules performing different learning tasks.

123

Appendix A

Path availability and coordinate system

In large-scale distributed systems a full-mesh active probing of end-to-end performance metrics
is very costly. One way to make it more scalable consists in measuring a small set of pairs
only, and infer the non measured ones. This approach has been used to infer Round Trip Times
(RTTs) using coordinate systems, but it does not extend to other metrics like the Available
Bandwidth (ABW). An alternative approach used in this deliverable consists in formulating this
problem as a matrix completion problem, whereby a matrix representing all the pairwise per-
formance values is only very partially known by actual measurements and all other entries have
to be inferred. This problem turns out to be feasible because the matrix can be approximated
by a low-rank matrix, thanks to correlations among all the measurements. Moreover, it can
be solved in a fully distributed way without building the huge matrix, and without relying on
special nodes such as landmarks or central calculation servers.

In Section A.1 a fully decentralized algorithm based on Stochastic Gradient Descent (SGD)
is proposed to solve the matrix completion problem. By letting network nodes exchange mes-
sages with each other, the algorithm only requires each node to collect and process local mea-
surements, with no need for explicit constructions of matrices, nor for any special nodes such
as landmarks or central servers. In addition, we compared comprehensively matrix factoriza-
tion and Euclidean embedding to demonstrate the suitability of the former on network distance
prediction. Extensions by incorporating robust loss functions and the non-negativity constraints
were also studied. We justify the simplicity, the flexibility and the superiority of our approach
by extensive experiments on various publicly available datasets of network delays of both static
measurements and dynamic measurements collected from a real application. This work has
been submitted for publication in a journal. An earlier version appeared in [78].

This approach is also applicable when the performance values are not measured exactly,
but are only known qualitatively as binary values, namely whether they are "good enough" or
"too bad" wrt a threshold. This is particularly important for a metric like the ABW which is
much more costly to be determined exactly than to be assigned to a binary class. The new matrix
completion problem now requires to predict the class of the missing matrix entries knowing only
the classes of the measured entries. We have extended our decentralized matrix factorization
algorithm to solve this new problem and shown its performance on three (static and dynamic)
datasets of RTTs and ABWs, and its robustness against erroneous measurements. We have
also highlighted its usability on a peer selection application. This class-based variant of our
approach is not described in this deliverable by lack of place, but the reader can refer to [77].

In Section A.2, we rely on this Network Coordinate System (NCS) to discover appropriate

124

routing shortcuts in the network, namely paths through intermediate nodes that turn out to have
smaller delays than the direct paths. Indeed, the knowledge of estimated delays between nodes
can be useful to select better paths for real-time applications (e.g. IDIPS). However, since the
Internet was not developed with QoS guarantees in mind, the default route between two nodes
is not guided by QoS constraints (and, in particular, by constraints on the delays). In many cases
the route between two nodes A and B chosen by the network is not the lowest-delay path and it
is possible to find nodes C that are shortcuts in term of delays:

RT T (A,B)> RT T (A,C)+RT T (C,B)

where RT T (X ,Y) is the RTT (Round Trip Time) between the nodes X and Y . For any path AB
in a network, our objective is to find some nodes C that are shortcuts in terms of delays. If we
are able to find these shortcuts we will be able to provide a better service to the applications
using the network : instead of sending the data directly from A to B, we will use a node C as
relay in order to obtain smaller delays. Therefore, in this chapter we will also propose some
methods that rely on the nodes running an NCS to detect useful routing shortcuts in networks.
An earlier version of this work appeared in [26].

Finally, in Section A.2.2 we explain how these algorithms (NCS and Shortcut detector) have
been implemented and combined to operate as standard peer-to-peer applications. Moreover,
the Vivaldi NCS was also implemented within the ECODE XORP architecture (see deliverable
D3.5).

A.1 Network Distance Prediction by Decentralized Matrix
Factorization

A.1.1 Introduction
On large networks such as the Internet, many applications require the knowledge of end-to-end
network distances in order to achieve Quality of Service (QoS) objectives. In the networking
community, the distance between two network nodes is defined as the delay between them, in
the form of either one-way delay or more often round-trip time (RTT). Examples include peer-
to-peer file sharing and content distribution systems where peers preferably access nodes or
servers that are likely to respond fast [30, 114, 99, 100, 118, 33, 46].

Clearly, it is unfeasible to probe actively end-to-end distances among all pairs of nodes in
large networks as the demanded measurements grow quadratically with the scale of the network.
A natural idea is to probe a small set of pairs and then predict the distances between other pairs
where there are no direct measurements. This understanding has motivated numerous research
on Network Coordinate System (NCS) [89, 31, 83, 78, 36]. For instance, approaches based on
Euclidean embedding have been widely studied and achieved good performance in interesting
scenarios [31, 72]. Realizing that the assumption of Euclidean distance properties (symmetry
and triangle inequality) are often violated in practice, as observed in various studies [119, 75,
115, 31, 14, 81], matrix factorization has recently drawn increasing attention of the networking
community [83, 78].

In this section, we investigate matrix factorization for network distance prediction. In partic-
ular, we formulate the problem of network distance prediction as a matrix completion problem

125

where a partially observed matrix is to be completed [25, 24, 65]. Here, the matrix contains dis-
tance measurements such as RTTs between network nodes with some of them known and the
others unknown thus to be filled. Matrix completion is only possible if matrix entries are largely
correlated, which certainly holds for network distances because Internet paths with nearby end
nodes often overlap and share common bottleneck links. These redundancies among network
paths cause the constructed distance matrix to be low rank, which will be empirically demon-
strated for various RTT datasets.

The low-rank nature of network distance matrices enables their completion by many matrix
factorization techniques. In this section, we propose a novel approach based on Stochastic
Gradient Descent (SGD) which has two distinct features. First, it is fully decentralized with no
requirement of explicit constructions of matrices and of special nodes such as landmarks and
central servers where measurements are collected and processed. Instead, by letting network
nodes exchange messages with each other, matrix factorization is collaboratively and iteratively
achieved at all nodes, with each node equally retrieving a number of distance measurements.
Second, the algorithm is simple, with no infrastructure, and is computationally lightweight,
containing only vector operations. These features make it suitable for dealing with practical
problems, when deployed in real applications, such as measurement dynamics where network
measurements vary largely over time and network churn where nodes join and leave a network
frequently. Extensive experiments on various publicly-available RTT datasets show not only the
scalability and the accuracy of our approach but also the usability by real Internet applications.

A short version of this section was published in [78]. Here, we make the following distinct
contributions:

• Our previous algorithm in [78] was based on Alternating Least Squares (ALS), requiring
each node to probe all local measurements simultaneously. In contrast, the new SGD-
based algorithm allows each node to probe one measurement at a time, making the system
more flexible. The new algorithm also addresses practical issues including the sensitivity
to an important parameter of SGD, the learning rate, and the passive acquisition and the
dynamics of the measurements.

• We compare comprehensively matrix factorization and Euclidean embedding to reveal
the suitability of matrix factorization. A unified view is provided which leads to a unified
optimization framework to solve both of them.

• Two extensions to the current matrix factorization model are proposed, including the
incorporation of a robust loss function and a non-negativity constraint to preserve the
non-negativity of the distances. These extensions are found helpful in improving the ac-
curacy of the prediction and require little modification to the algorithm with no additional
computational cost.

• In addition, more extensive evaluations have been carried out to study not only the im-
pacts of the parameters but also the accuracy of our approach. In particular, we highlight
the usability of our approach by evaluations using real data containing dynamic measure-
ments collected from a real Internet application, Azureus [114, 72].

The rest of the section is organized as follows. Section A.1.2 summarizes the related work
on network distance prediction based on Euclidean embedding and matrix factorization. Sec-
tion A.1.3 introduces the formulation of network performance prediction as matrix completion

126

and its resolution by low-rank matrix factorization. Section A.1.4 describes the decentralized
matrix factorization algorithm based on Stochastic Gradient Descent. Conclusions and future
work are given in Section A.1.6.

A.1.2 Related Work
Among numerous work on network distance prediction, we only discuss and compare ap-
proaches based on Euclidean embedding and on matrix factorization due to their simplicity
and generality. We refer the interested readers to [36] for a more detailed review of this field.

Euclidean Embedding

A straightforward approach to network distance prediction is to embed network nodes into a
metric space where each node is assigned a coordinate from which distances can be directly
computed. Two representatives are Globe Network Positioning (GNP) [89] and Vivaldi [31].

GNP firstly proposed the idea of network embedding that relies on a small number of land-
marks. Based on inter-landmark distance measurements, the landmarks are first embedded into
a metric space such as Euclidean or spherical coordinate systems. Then, the ordinary nodes cal-
culate their coordinates with respect to the landmarks. Vivaldi extended GNP in a decentralized
manner by eliminating the landmarks. It simulates the network by a physical system of spring
and minimizes its energy according to the Hooke’s law to find an optimal embedding.

In all metric spaces, distances undergo two important properties:

• Symmetry: d(A,B) = d(B,A);

• Triangle Inequality: d(A,B)+d(B,C)> d(A,C).

However, network distances are not necessarily symmetric especially when represented by one-
way delays [92, 52]. The bigger issue is the property of triangle inequality. Many studies have
shown that the violations of triangle inequality (TIV) are widespread and persistent in current
Internet [119, 75, 115, 31, 14, 81]. In the presence of TIVs, metric space embedding shrinks
the long edges and stretches the short ones, degrading heavily the accuracy of the embedding.
Figure A.1 illustrates the idea of Euclidean embedding for network distance prediction and the
impact of TIVs on the accuracy.

Without loss of generality, we focus on the simplest metric space, namely Euclidean coor-
dinate systems, in the rest of this section. Other metric spaces are in principle the same.

3030

50A(10,10) B(60,10)BA
100

10

C

Euclidean Space

10

Internet Delay Space
C(35,26)

Embedding

Figure A.1: Euclidean Embedding.

127

25 20 32 23

25 27 20 25 31

23 25 27 33

20 27 20 10

20 18 21 29

27 21 33

31 18 19 39

43 31 33 39

D

≈ X

︷︸︸︷r columns

× Y T =

26 39 19 35 25 28 41

24 29 6 18 6 23 30

39 29 27 19 33 13 30

19 6 24 19 6 18 34

35 18 19 20 20 25 16

23 6 25 6 20 19 34

28 23 13 16 25 22 44

41 30 30 34 16 34 44

D̂

Figure A.2: Matrix Factorization. Note that the diagonal entries of D and D̂ are empty.

Matrix Factorization

Alternatively, matrix factorization has also been used for network distance prediction, illustrated
in Figure A.2. The biggest advantage of matrix factorization is that it makes no assumption
of Euclidean distance properties and thus can tolerate the widespread TIVs and the possible
asymmetry in network distance spaces.

The first system based on matrix factorization was Internet Distance Estimation Service
(IDES) [83] which has the same landmark-based architecture as GNP. The difference is that
IDES factorizes a small but full inter-landmark distance matrix, at a so-called information
server, by using Singular Value Decomposition (SVD). Similarly, Phoenix treated the early-
entered nodes as landmarks and allowed an ordinary node to select any existing nodes in the
system which already have coordinates assigned [27]. These landmark-based systems suffers
from common drawbacks including single-point failures, landmark overloads and potential se-
curity problems. The selection of landmarks can also affect the accuracy of the prediction.
Moreover, in Section A.1.3, we will show that these landmark-based approaches are actually
special cases of a general decentralized matrix factorization model and thus can also be solved
by our approach.

Our main contribution is the formulation of the distance prediction problem as matrix com-
pletion. Although numerous approaches to matrix completion have been proposed, many of
which are based on low-rank matrix factorization [87, 23, 105], few are applicable to network
applications where decentralized processing of data is appreciated. Thus, we developed a fully
decentralized algorithm based on Stochastic Gradient Descent (SGD) which is founded on the
stochastic optimization theory with nice convergence guarantees [16]. We then studied empir-
ically the sensitivity of the algorithms to the parameters and compared it with state-of-the-art
approaches to demonstrate its accuracy.

A.1.3 Network Distance Prediction by Matrix Factorization
This section formulates the problem of network distance prediction as matrix completion and
describes its resolution by matrix factorization. We also provide a unified view of different
approaches to network distance prediction, the insights of which lead to a unified optimization
framework.

128

Problem Formulation

Assuming n nodes in the network, a n× n distance matrix is constructed with some distances
between nodes measured and the others unmeasured. Denote D the measured distance matrix
with di j the measured distance from node i to node j and D̂ the predicted distance matrix with
d̂i j the predicted distance computed from some function.

Given the above notations, network distance prediction can be viewed as a matrix comple-
tion problem that estimates the missing entries in D from a small number of known entries [24].
Its resolution generally amounts to minimizing a loss function of the following form

L(D, D̂,W) =
n

∑
i, j=1

wi jl(di j, d̂i j), (A.1)

where W is a weight matrix with wi j taking values between 0 and 1. In a simple case, wi j = 1
if di j is measured and 0 otherwise. l is a loss function that penalizes the difference between
an estimate and its desired or true value. The most commonly-used loss function is the L2 or
square loss function,

l(d, d̂) = (d− d̂)2. (A.2)

We will discuss other loss functions in Section A.1.5.

Low-Rank Approximation and Matrix Factorization

Additional constraints are needed to solve the matrix completion problem in Eq. A.1. A com-
mon approach is to constrain the rank of the approximate matrix D̂ so that

Rank(D̂) = r, (A.3)

where r� n for D of size n×n
The assumption in this low-rank approximation is that the entries of D are largely correlated,

which causes D to have a low effective rank. To show that it holds for our problem, Figure A.3
plots the singular values of two RTT matrices. It can be seen that the singular values of both
matrices decrease fast as the 10th singular values are 5.7% and 2.9% of the largest ones respec-
tively, indicating strong correlations in them. The low-rank nature of many other RTT datasets
have been previously reported in [112].

Thus, to find D̂, we need to minimize Eq. A.1 subject to Eq. A.3, which is considerably
difficult due to the rank constraint. However, as D̂ is of low rank, we can factorize it into the
product of two smaller matrices, i.e.,

D̂ = XY T , (A.4)

where X and Y are of size n× r. Therefore, we can get rid of the rank constraint by replacing D̂
by XY T in Eq. A.1, and then look for X and Y instead by minimizing

L(D,X ,Y,W) =
n

∑
i, j=1

wi jl(di j,xiyT
j), (A.5)

where xi is the ith row of X , yi is the ith row of Y , and xiyT
j = d̂i j is the estimate of di j. Note that

the factorization in Eq. A.4 has no unique solution as

D̂ = XY T = XGG−1Y T , (A.6)

129

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

singular value

s
in

g
u

la
r

v
a

lu
e

s

P2psim525

Meridian2255

Figure A.3: The singular values of a RTT matrix of 2255×2255, extracted from the Meridian
dataset [117] and called “Meridian2255”, and of a RTT matrix of 525× 525, extracted from
the P2psim dataset [9] and called “P2psim525”. The singular values are normalized so that the
largest singular values of both matrices are equal to 1.

where G is any arbitrary r× r invertible matrix. Thus, replacing X by XG and Y T by G−1Y T

results in the same D̂.
Generally, the class of techniques to solve the low-rank approximation is matrix factoriza-

tion. When D is complete, analytic solutions can be found by using singular value decompo-
sition (SVD) [47]. With missing entries, the factorization can only be done by iterative opti-
mization methods such as Gradient Descent and Newton algorithms [23]. Note that additional
constraints can be imposed in Eq. A.5. For instance, the entries of X and Y can be required to
be non-negative in order to recover a non-negative matrix, leading to the non-negative matrix
factorization (NMF) [73].

Incorporation of the Regularization

Matrix completion by matrix factorization suffers from a well-known problem called overfitting
in the field of machine learning [111]. In words, directly optimizing Eq. A.5 often leads to a
“perfect” model with no or small errors on the training data while having large errors on the
unseen data which are not used in learning. The problem is more severe when D is sparse or
when r is large.

A common way to avoid overfitting is through regularization that penalizes the norms of the
solutions, resulting in the following regularized loss function,

L(D,X ,Y,W,λ) = (A.7)
n

∑
i, j=1

wi jl(di j,xiyT
j)+λ

n

∑
i=1

xixT
i +λ

n

∑
i=1

yiyT
i ,

where λ is the regularization coefficient that controls the extent of regularization.
Besides avoiding overfitting, the regularization also helps overcome the drift of the solutions

due to the non-uniqueness in Eq. A.6, which often leads to the overflows of the solutions.
Among the infinite number of pairs of X and Y which produce the same D̂, the incorporation of
the regularization will force to choose the pair with the smallest norm.

130

A Unified View of Approaches to Network Distance Prediction

Although popular approaches to network distance prediction vary by adopting various models
including Euclidean embedding and matrix factorization and by adopting different architectures
of either landmark-based or landmark-less and thus decentralized, these seemingly different
approaches all optimize the same function in Eq. A.1 but differ only in the setting of wi j and in
the associated distance functions to calculate d̂i j.

• Setting of wi j: For landmark-based methods, as all paths between landmarks are measured
and ordinary nodes probe only the landmarks,

wi j =

{
1 if node j is a landmark
0 otherwise

.

For decentralized methods, as each node equally probes a number of nodes,

wi j =

{
1 if node i probes node j
0 otherwise

.

Figure A.4 illustrates the architectures of landmark-based and decentralized systems.

• Distance functions to calculate d̂i j: For matrix factorization, as described above,

d̂i j = xiyT
j , (A.8)

For Euclidean embedding, the Euclidean distance is defined as

d̂i j =
√
(xi− x j)T (xi− x j), (A.9)

where xi and x j are the Euclidean coordinates of node i and node j.

The above insights suggest a unified framework to treat and to solve equally network dis-
tance prediction under different models and different architectures. For instance, the decentral-
ized matrix factorization algorithms proposed in the following sections can be used to solve
both Euclidean embedding and landmark-based systems with little modification.

A.1.4 Decentralized Matrix Factorization for Network Distance Predic-
tion

The goal is to find X and Y such that XY T best approximates D by minimizing Eq. A.7. Com-
monly, it requires to collect and to process a number of distance measurements at a central node,
which is a major obstacle to network applications. Below, we introduce algorithms to minimize
Eq. A.7 in a fully decentralized manner.

131

Figure A.4: Architectures of landmark-based, the left plot, and decentralized, the right plot,
systems for network distance prediction. The squares are landmarks and the circles are ordinary
nodes. The directed path from node i to node j means that node i probes node j and therefore
wi j = 1.

Problem Formulation

A decentralized resolution of Eq. A.7 forbids the explicit constructions of matrices. Thus, each
row of X and of Y , denoted by xi and yi and called the x and y coordinates of node i in the sequel,
are stored distributively at each node. To calculate xi and yi locally, Eq. A.7 is decomposed into
a number of sub-problems, defined as

li =
n

∑
j=1

wi jl(di j,xiyT
j)+λxixT

i , (A.10)

li =
n

∑
j=1

w jil(d ji,x jyT
i)+λyiyT

i . (A.11)

Essentially, li is the regularized loss of the edges from node i to other nodes and li is that
of the edges from other nodes to node i. Clearly, optimizing li and li requires only distance
measurements related to node i. Note that if the distance measurements are RTTs, then d ji = di j
as RTTs are approximately symmetric. Consequently, w ji = wi j as d ji and di j are either both
known or both unknown.

Eqs. A.10 and A.11 provide a natural decomposition of the large-scale optimization prob-
lem in Eq. A.7, which enables a decentralized resolution. In seeing that Eq. A.10 and Eq. A.11
are standard least-squares problems where analytical solutions exist, our previous work in [78]
solved the matrix factorization problem by Alternating Least Squares (ALS), which alterna-
tively and iteratively solves a number of least-squares sub-problems in the forms of Eqs. A.10
and A.11.

While the ALS-based algorithm performed well in simulations on datasets containing static
measurements, it requires each node to probe measurements with a number of nodes simultane-
ously, which is impractical when deployed in real applications. Below, we propose a different

132

algorithm based on Stochastic Gradient Descent (SGD) that processes, at each node, measure-
ments one by one and one at a time.

Stochastic Gradient Descent (SGD)

SGD is a variation of traditional Batch Gradient Descent which is often used for online machine
learning [16]. Instead of collecting all training samples beforehand and computing the gradients
over them, each iteration of SGD chooses one training sample at random and updates the pa-
rameters being estimated along the negative gradients computed over that chosen sample. SGD
is particularly suitable for network applications, as measurements can be acquired on demand
and processed locally at each node. It also has simple update rules that involve only vector
operations and is able to deal with large-scale dynamic measurements.

Stochastic Updates In using SGD, at each time, each node probes one node in the system and
retrieves the distance measurements between them and the coordinates of that node. Let node j
be the chosen node by node i at the current time. Then, the regularized losses that node i seeks
to reduce with respect to node j are

li j = l(di j,xiyT
j)+λxixi

T , (A.12)

l ji = l(d ji,x jyT
i)+λyiyi

T . (A.13)

The gradients of li j and l ji are

∂ li j

∂xi
=

∂ l(di j,xiyT
j)

∂xi
+λxi, (A.14)

∂ l ji

∂yi
=

∂ l(d ji,x jyT
i)

∂yi
+λyi. (A.15)

In particular, the gradients of the L2 loss function are

∂ l
∂xi

=−(di j− xiyT
j)y j, (A.16)

∂ l
∂yi

=−(d ji− x jyT
i)x j. (A.17)

Note that we drop the factor of 2 in the gradients for mathematical convenience.
Then, node i updates its coordinates along the negative gradient directions, given by

xi = (1−ηλ)xi +η(di j− xiyT
j)y j, (A.18)

yi = (1−ηλ)yi +η(d ji− x jyT
i)x j, (A.19)

where η , called learning rate or step size, controls the speed of the updates.

Minibatch and Line Search The SGD algorithm is sensitive to the learning rate η , where a
too large η results in large steps of updates and may overflow the solution, whereas a too small

133

Algorithm 2 Line Search (for updating xi)
1: compute l0

i by Eq. A.10;
2: initialize η by a large value;
3: while true do
4: compute xi by Eq. A.20;
5: compute li by Eq. A.10;
6: if li +δ < l0

i then
7: return
8: end if
9: η ←− η/2;

10: end while

η makes the convergence slow. This sensitivity can be relieved by using more training samples
at the same time, leading to minibatch SGD with the following update rules

xi = (1−ηλ)xi +η

n

∑
j=1

wi j(di j− xiyT
j)y j, (A.20)

yi = (1−ηλ)yi +η

n

∑
j=1

w ji(d ji− x jyT
i)x j. (A.21)

To completely get rid of η , a line search strategy can be incorporated to determine η adap-
tively [15]. In particular, in each update, η starts with a large initial value and is gradually
decreased until the losses in Eq. A.10 or Eq. A.11 are reduced after the update. The line search
algorithm for updating xi is given in Algorithm 2. The same algorithm can be used for updating
yi by replacing Eq. A.10 by Eq. A.11 and Eq. A.20 by Eq. A.21. Note that δ in Line 6 is a
constant of some small positive value to ensure that the algorithm stops. It is also effective to
adapt η by line search.

Neighbor Decay and Neighbor Selection

As mentioned earlier, it is preferable to have a system that probes and processes measurements
one by one. Thus, we let each node maintain the information (distance measurements and coor-
dinates) of the nodes with which it communicates, called neighbors in the sequel. In minibatch
SGD, each node probes one neighbor at a time but updates its coordinates with respect to all
neighbors in the neighbor set using their recorded historical information.

A neighbor decay strategy is incorporated that scales the weight of each node in the neighbor
set by its age so that older information receives less weight, i.e.,

wi j =
amax−a j

∑ j∈NeighborSet(i)(amax−a j)
, (A.22)

where a j is the age of the information of node j and amax is the age of the oldest information
in the neighbor set. Note that this neighbor decay strategy was firstly proposed by [72] to
overcome the problem of skewed neighbor update in Vivaldi. In words, some nodes may be
probed at far greater frequency than others due simply to their longer life cycles and a direct
consequence is that the optimization will become skewed toward these nodes.

134

Algorithm 3 DMFSGD(i, j)
1: node i retrieves di j,d ji,x j,y j actively or passively;
2: node i updates the weights of its neighbors by Eq. A.22;
3: update xi by Eq. A.20 with η set by line search;
4: update yi by Eq. A.21 with η set by line search;

Conventionally, the neighbors of a node are selected randomly and the distances between
a node and its neighbors are probed by active measurements [32]. However, in practice, it is
more attractive to perform the updates of the coordinates passively without generating any extra
traffic. In some applications such as Azureus, the passivity is forced, as we have no control over
the selection of neighbors with which a node communicates and when it communicates with
them [72].

Therefore, we differentiate the situations where distances are probed by active and pas-
sive measurements. For the former, the conventional random neighbor selection procedure is
adopted that each node randomly selects k nodes as its neighbors and actively probes one of
them from time to time. For the latter, no neighbor selection is performed and each node main-
tains a relatively small set of active neighbors with which it recently communicates and updates
its coordinates whenever a measurement is made available. Note that this difference has no
impact to the update rules in eqs A.18 and A.19 or in eqs A.20 and A.21.

Algorithm

We denote the SGD-based decentralized matrix factorization algorithm as DMFSGD, given in
Algorithm 3. Like Vivaldi [32], our DMFSGD algorithm has no infrastructure and employs the
same process at all nodes. It is simple, with update rules containing only vector operations.

In the implementation, the coordinates of each node are initialized with random numbers
uniformly distributed between 0 and 1. Empirically, the algorithm is insensitive to the random
initialization of the coordinates. We would like to point out that the algorithm is one of those
randomized gossip algorithms where each node exchanges messages with a number of other
nodes randomly [17].

As mentioned earlier, the algorithm is generic and can also deal with landmark-based ar-
chitectures, by letting each node only select landmarks as its neighbors, and with Euclidean
embedding, by adopting the Euclidean distance defined as Eq. A.9 when optimizing Eq. A.1,
which leads to the update rule of Vivaldi [32], given by

xi = xi−η
∂ l(di j, d̂i j)

∂xi
= xi +η(di j− d̂i j)

xi− x j

d̂i j
.

Note that Vivaldi adopted the L2 loss function in Eq. A.1 with no regularization incorpo-
rated, and the learning rate η , termed differently as timestep, was adapted by taking into ac-
count some confidence measure of each node to its coordinate. Thus, Vivaldi can be viewed
as a SGD-based decentralized Euclidean embedding algorithm, instead of the simulation of a
spring system in [32].

A.1.5 Extended Matrix Factorization Models
This section discusses possible ways to extend the common matrix factorization model.

135

Robust Matrix Factorization

The widely-used L2 loss function is known to be sensitive to outliers which often occur in net-
work measurements due to network anomaly such as sudden traffic bursts and attacks from
malicious nodes. Other loss functions such as the L1 loss function, the ε-insensitive loss func-
tion and the Huber loss function are more robust and can tolerate outliers [53, 63]. For example,
the L1 loss function is defined as

l(d, d̂) = |d− d̂|. (A.23)

Thus, we can enhance the robustness of matrix factorization by replacing the L2 loss func-
tion by e.g. the L1 loss function, and the same SGD procedure can be applied to solve the
robust matrix factorization problem. Note that the L1 loss function is non-differentiable and the
gradients have to be approximated by the subgradients 1, given by

∂ l
∂xi

=−sign(di j− xiyT
j)y j, (A.24)

∂ l
∂yi

=−sign(d ji− x jyT
i)x j. (A.25)

Replacing the gradient functions of Eq. A.14 and Eq. A.15 by Eq. A.24 and Eq. A.25, the update
rules of minibatch SGD become

xi = (1−ηλ)xi +η

n

∑
j=1

sign(di j− xiyT
j)wi jy j, (A.26)

yi = (1−ηλ)yi +η

n

∑
j=1

sign(d ji− x jyT
i)w jix j, (A.27)

Comparing Eq. A.26 and Eq. A.27 with Eqs. A.20 and Eq. A.21, the only difference is that
for the L2 loss function, the magnitudes of the updates are proportional to the fitting errors
(d− xyT), whereas for the L1 loss function, only the signs of the fitting errors are taken into
consideration and decide the directions of the updates.

Non-Negativity Constraint

Conventional matrix factorization techniques do not preserve the non-negativity of the dis-
tances. Empirically, only a very small portion of the predicted distances were found negative
by our DMFSGD algorithm, and a direct solution is to turn d̂i j into a small positive value if
d̂i j = xiyT

j < 0.
A systematic solution is to incorporate the non-negativity constraint in matrix factorization,

leading to the non-negative matrix factorization (NMF) that optimizes

n

∑
i, j=1

wi jl(di j,xiyT
j)+λ

n

∑
i=1

xixT
i +λ

n

∑
i=1

yiyT
i , (A.28)

subject to xi > 0, yi > 0, i = 1, . . . ,n.

1Analogously, the subgradient-based technique that optimizes non-differentiable functions is called subgradient
descent [15]. Following the convention in [16], we use the term SGD to refer to both Stochastic Gradient and
SubGradient Descent.

136

The optimization of NMF is not fundamentally different from that of the unconstrained
matrix factorization, adding only one projection step that turns the negative entries in xi and
yi into zero after each SGD update which causes no noticeable impact on the speed of the
algorithm. The technique is also known as projected gradient descent [80].

Note that the non-negativity constraint has been previously studied in [83, 27], both of which
adopted a more heavyweight non-negative least-squares solver.

Symmetric Distance Matrix Factorization

Also note that network distances are symmetric if represented by RTT and that this symmetry is
not preserved either. A direct solution is to turn the predicted distances symmetric by defining
a symmetric distance function as

d̂s
i j =

d̂i j + d̂ ji

2
=

xiyT
j + x jyT

i

2
. (A.29)

As distances are defined as in Eq. A.29, a systematic solution is to factorize D by optimizing
n

∑
i=1

n

∑
j=1

wi jl(di j, d̂s
i j)+λ

n

∑
i=1

xixT
i +λ

n

∑
i=1

yiyT
i . (A.30)

Similar SGD update rules can be derived.

Height Model

The height model in Vivaldi [32] can also be incorporated that augments the x and y coordinates
of a node with a height. Similarly, the x and y coordinates model the high-speed Internet core,
while the height models the time packets take to travel the access link from the node to the Inter-
net core. The cause of the access link distance includes queuing delay and low bandwidth [32].
The height augmented symmetric distance is defined as

d̂hs
i j =

xiyT
j + x jyT

i

2
+hi +h j. (A.31)

Correspondingly, the loss function to be optimized becomes
n

∑
i=1

n

∑
j=1

wi jl(di j, d̂hs
i j)+λ

n

∑
i=1

xixT
i +λ

n

∑
i=1

yiyT
i . (A.32)

Similar SGD update rules can be derived.

Extended DMFSGD Algorithm

Empirically, we found no or little improvements by incorporating the symmetric or height-
augmented symmetric distance function in Eq. A.29 or A.31, thus include neither of them in
our system. However, the incorporation of the non-negativity constraint and the robust loss
function not only improved the accuracy but also made the results more stable and less sensi-
tive to parameter settings. The extended DMFSGD algorithm is given in Algorithm 4. Note
that as Algorithm 3 is a special case of Algorithm 4, we will refer to the extended version in
Algorithm 4 simply as DMFSGD in the sequel.

137

Algorithm 4 Extended_DMFSGD(i, j)
1: node i retrieves di j,d ji,x j,y j actively or passively;
2: node i updates the weights of its neighbors by Eq. A.22;
3: if use L2 loss function then
4: update xi by Eq. A.20 with η set by line search;
5: update yi by Eq. A.21 with η set by line search;
6: else {use L1 loss function}
7: update xi by Eq. A.26 with η set by line search;
8: update yi by Eq. A.27 with η set by line search;
9: end if

10: if force non-negativity then
11: turn the negative entries in xi and yi into 0;
12: end if

A.1.6 Conclusions
We have presented a novel approach to network distance prediction. The success of the ap-
proach roots both in the exploitation of the dependencies across distance measurements between
network nodes and in the stochastic optimization which enables a fully decentralized architec-
ture. A so-called Decentralized Matrix Factorization based on Stochastic Gradient Descent
(DMFSGD) algorithm is proposed to solve the distance prediction problem. The algorithm is
simple, with the same architecture as Vivaldi, scalable, able to deal with dynamic measurements
in large-scale networks, and accurate, generally superior to Vivaldi. In particular, experiments
on real data collected from Azureus demonstrates the potential of the algorithm being utilized
by Internet applications, which we would like to study in the future.

A.2 Finding routing shortcuts
The knowledge of estimated delays between nodes can also be useful to select better paths
for real-time applications. In the previous deliverables, we have proposed some methods that
rely on the nodes running an ICS to detect routing shortcuts in networks. In this section we
essentially show that combining the methods proposed in the previous delivrable provides better
detection results.

A.2.1 Problem Formalization
When an edge AB is a TIV-edge, this means that there exists a routing shortcut ACB via some
node C in terms of delay. In such case, using C as a relay node to go from A to B instead of
sending the data directly from A to B reduce the delay experienced between A and B and is
called overlay routing. The second sub-problem we address then consists in finding C nodes
that are routing shortcuts for a given path AB.

138

Related work

Overlay routing is attractive because deploying an overlay requires only the cooperation of
the nodes participating in the overlay. It has already been proposed to use overlay routing to
improve the performance (and the reliability) of a network: it has been observed in [103] that
indirect routing can significantly improve the performance for many paths and, on the basis of
these observations, Detour [102] and RON [11] were proposed. The idea of RON is to build
a fully connected mesh between the nodes participating in the overlay and to monitor all the
paths. If a direct path between two nodes is broken or if it has poor performance it proposes to
use relay nodes to reach the destination.

Even if overlay networks seem to be an easy way to improve the performance of the In-
ternet, they are not often used by applications. The main problem is the scalability. Indeed,
to obtain the results proposed by RON, it is necessary to measure all the paths and distribute
measurements results among the overlay nodes in order to apply a routing algorithm. These
operations become costly if a large number of nodes are members of the overlay.

A first approach to improve the scalability of overlay networks consists in eliminating redun-
dant overlay paths. For example, Nakao et al. [85, 86] proposed to do that by using topological
information (AS-level topology, etc.).

Another solution consists in reducing the communication overhead generated by the ex-
changes of the measurements results between all the nodes. In RON this overhead is O(n2)
where n is the number of nodes in the overlay. Sontag et al. [109] proposed a protocol allowing
each node to find an optimal one-hop path to any other node with a communication overhead
O(n1.5).

The last way to improve the scalability of overlay routing is to reduce the measurement
overhead. Since the objective is to change traffic routes, we suppose that measurements must be
done quite frequently to have accurate information about the state of the network. To circumvent
this problem Gummadi et al. [48] proposed to route through random relay nodes instead of doing
measurements and they observed that it is sufficient to ensure reliability. However, Sontag et
al. [109] observed that it is not sufficient to find good alternative paths considering particular
metrics like latency. Recently, Lumezanu et al. [82] proposed to use an ICS to detect one-hop
shortcuts in a network. Since these situations cannot be reproduced by the estimations provided
by the ICS, their idea consists in using estimation errors to find paths that are edges of one-
hop shortcuts. We have also explored that solution at the beginning of our work but we gave up
because our observations showed that the impact of one-hop shortcuts on an ICS vary according
to which shortcut’s edges are measured by the ICS (to compute the estimations) and according
to the existence of other shortcuts in the network. We have investigated other ways [62, 79] to
detect one-hop shortcuts by observing the behavior of the ICS over time instead of computing
the estimation errors at a given time. The results obtained are satisfactory but these detection
methods are quite heavy to deploy: they need constant collection of data and the processing of
these data has a cost. Since the detection of one-hop shortcuts by analyzing the behavior of an
ICS seems difficult we propose to use the estimations provided by the ICS to estimate whether
or not some node C is a shortcut for a given path AB.

Contribution

Like Lumezanu et al. [82], we propose to use an ICS (Vivaldi) in order to reduce the measure-
ment overhead of an overlay routing mechanism. We know that using only the estimated delays

139

provided by an ICS to find the shortcuts in a network is useless. Indeed, the principle of an ICS
is to give to each node of the network a coordinate in a metric space such that the distance in
the metric space between the coordinates of two nodes gives an estimation of the delay between
these nodes. Since the triangle inequality must hold in a metric space, it is impossible to find
three nodes such that

EST (A,B)> EST (A,C)+EST (C,B) (A.33)

where EST (X ,Y) is the estimated RTT between the nodes X and Y . So, we must combine
estimations with measurements in order to obtain a shortcuts detection criterion. In addition to
the estimated RTT of each path in the network, we consider that we can obtain the following
measurement results. First, if we look for a shortcut for the path AB, we assume that RT T (A,B)
can be measured. Secondly, we assume that we can obtain the Vivaldi’s measurement results
done between the nodes and their neighbors in order to compute the coordinates.

Given these data we want to find criteria that provide a set of C nodes that are probably
shortcuts for that path. As such criteria can provide a large set of nodes, we need also a way to
rank the C nodes in order to find the best shortcuts as fast as possible.

A.2.2 Implementation
Without loss of generality we consider a classical ICS algorithm, Vivaldi [32], and we have
proposed two basic shortcut detection criteria in the previous delivrable: EDC and ADC. In this
section, we will describe a third criterion that combine the two basic ones in order to obtain
better detection results.

Detection criteria definitions

Lumezanu et al. stated in [82] that, if a node C violates the triangle inequality with a path AB,
EST (A,B) is an under-estimation of RT T (A,B). We observed this too: generally, more than
80% of the paths for which there exists at least one (significant) shortcut are under-estimated
by the ICS. Our detection criteria are based on that observation. Indeed, if the estimation of the
alternative path is reliable and if the path AB is significantly under-estimated, we will restore
the TIV by replacing EST (A,B) by RT T (A,B) in (A.33).

Estimation Detection Criterion (EDC) is our first criterion. To decide if a node C is a
shortcut for a path AB, this criterion compares the measured RTT of the direct path between
A and B and the estimated RTT of the alternative path using C as relay. Formally, a node C is
considered as a shortcut for the path AB if

RT T (A,B)> EST (A,C)+EST (C,B) (A.34)

The potential problem with that criterion is that it uses the values of the estimations provided by
the ICS as if there were no estimation error. However, we know that there are estimation errors
and, in particular, that these errors cannot be avoided if node C is a shortcut for the path AB. So,
using the exact values of the estimated RTTs to find shortcuts is not necessarily a good idea.

Approximation Detection Criterion (ADC) is our second criterion. For a path AB and a
node C, we define CA (resp. CB) as C’s nearest node among A’s (resp. B’s) Vivaldi neighbors
according to the estimated RTTs. Since A and CA (resp. B and CB) are neighbors, we assume

140

that RT T (A,CA) (resp. RT T (B,CB)) is known and can be used by the criterion to approximate
the RTT of the alternative path: a node C is considered as a shortcut for the path AB if,

RT T (A,B)> RT T (A,CA)+RT T (CB,B) (A.35)

There is still a potential problem with ADC. Indeed, if it is impossible to find some A’s
(resp. B’s) Vivaldi neighbors near C, the approximation of RT T (A,C) (resp. RT T (C,B)) by
RT T (A,CA) (resp. RT T (CB,B)) can be very bad. In such case, using the EDC criterion can
provide more reliable detection results even if there are estimation errors. So, we define a
Hybrid Detection Criterion (HDC) by combining our two basic criteria in order to exploit their
advantages. Formally, let CA (resp. CB) be C’s nearest node among A’s (resp. B’s) Vivaldi
neighbors according to the estimated RTTs. We define

VAL(A,C) =

{
RT T (A,CA) if EST (CA,C)< threshold
EST (A,C) otherwise

VAL(C,B) =

{
RT T (CB,B) if EST (CB,C)< threshold
EST (C,B) otherwise

where threshold is a value used to decide if CA (resp. CB) is sufficiently near C to obtain a quite
good approximation of RT T (A,C) (resp. RT T (C,B)) by using RT T (A,CA) (resp. RT T (CB,B)).
During our experiments, we observed that using a threshold equal to 10% of RT T (A,B) when
we search a shortcut for the path AB is a good choice. Using these definitions, a node C is
considered as a shortcut for the path AB if

RT T (A,B)> VAL(A,C)+VAL(C,B) (A.36)

Ranking of the detected C nodes

We have three criteria which, for a given path AB, are able to return a set of C nodes that are
probably shortcuts for that path. The problem with such criteria is that they do not provide
a set of nodes containing only the best shortcuts: they provide a possibly large set of nodes
containing nodes that are important shortcuts, nodes that are less important shortcuts and even
nodes that are not shortcuts (detection errors). So, we need a way to rank the C nodes of a set
in order to find quickly and easily the best shortcuts in that set. Since we want to find the node
C providing the smallest RTT for a path between A and B, we will rank the C nodes by order of
provided gain. For a path AB, the absolute gain (Ga) and the relative gain (Gr) provided by a
node C are

Ga = RT T (A,B)− (RT T (A,C)+RT T (C,B)) Gr =
Ga

RT T (A,B)
(A.37)

If C is a shortcut for the path AB, then Ga and Gr will have positive values and the most
interesting shortcut is the one that provides the highest value for these parameters. However,
we cannot compute Ga and Gr for all C nodes. Indeed, generally, we do not know the real RTT
of the alternative path that uses node C: we only have Vivaldi’s estimations for that path. As
we have used an estimation/approximation for the RTT of the alternative path in the shortcut
detection criteria, we will also use that estimation/approximation in the ranking criteria. The
values used to rank the C nodes of a set will be denoted estimated absolute gain (EGa) and

141

estimated relative gain (EGr). The definitions of these values depend on the shortcut detection
criterion used to obtain the set of C nodes:

EGa = RT T (A,B)− (V(A,C)+V(C,B)) EGr =
EGa

RT T (A,B)
(A.38)

where V(X ,Y) is the value used by the detection criterion to estimate the RTT of the path XY .
For a path AB, we will rank the C nodes of the set selected by a shortcut detection criterion

in decreasing order of their estimated gain. If the nodes with the highest estimated gains are also
those with the highest (real) gains then we will find the nodes providing the most interesting
shortcuts in the top of the ranking.

A.2.3 Conclusion
We showed that, for any given path AB, using only the RTT of that path and the information
available in an ICS, it is possible to select a small set of nodes containing very likely an inter-
esting one-hop shortcut (but not necessarily the best one) when shortcuts exist for that path. We
obtained the best results with our shortcut detection criterion called HDC. With that criterion
we are able to limit the number of potential shortcuts for any given path AB to about one or two
percent of the total number of nodes in the network. So, to improve significantly the latency
between A and B, we will only have to do measurements between A, B and these few candidate
nodes to know if they are really shortcuts and which of them is the best shortcut.

Our final goal consists in designing a distributed self-organized one-hop routing mechanism
based on the observations reported so far. Compared to a solution like RON [11] the traffic
generated by the measurements will be significantly reduced with our approach. With RON,
since each node has to do RTT measurements with all the other nodes this traffic is O(n2).
With our approach, each node measures only with its m neighbors and this traffic is O(n×m)
(with m� n). Our approach will also reduce the communication overhead generated by the
exchanges of the measurements results. With RON, each node has to send its measurement
results to each other nodes. So, the number of messages is O(n2) and the size of each message
is O(n). Consequently, the traffic generated is O(n3). With our approach this traffic is only
O(n2): each node will have to send a message to each other nodes (n2 messages) but each
message contains only one coordinate vector. Finally, even if our approach is less efficient than
RON in terms of quality of the shortcuts proposed (RON provides the guarantee to find the best
shortcut for any path and we don’t), our approach will generate a lot less traffic in the network.

142

Bibliography

[1] Geant.

[2] JumpGen Network-Processor Cards. http://www.jumpgen.com.

[3] matlab mdscale function. http://www.mathworks.de/access/helpdesk/
help/toolbox/stats/mdscale.html.

[4] Mawi working group traffic archive.

[5] METROlogy for SECurity and QoS. http://laas.fr/METROSEC.

[6] TCPReplay, Pcap Editing and Replay Tools for *NIX. http://tcpreplay.
synfin.net/.

[7] The KDD Cup 1999 Dataset. http://kdd.ics.uci.edu/databases/
kddcup99.

[8] Softflowd flow-based network traffic analyser, 2010.

[9] A simulator for peer-to-peer protocols. http://www.pdos.lcs.mit.edu/
p2psim/index.html.

[10] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Draft
Standard), September 2009.

[11] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks.
SIGOPS Oper. Syst. Rev., 35(5):131–145, 2001.

[12] A. Atlas et al. U-turn alternates for ip/ldp fast-reroute. IETF Draft, Feb, 2006.

[13] A. Atlas and A. Zinin. Basic Specification for IP Fast Reroute: Loop-Free Alternates.
RFC 5286 (Proposed Standard), September 2008.

[14] Suman Banerjee, Timothy G. Griffin, and Marcelo Pias. The interdomain connectivity of
PlanetLab nodes. In Proc. of the Passive and Active Measurement, Antibes Juan-les-Pins,
France, April 2004.

[15] D.P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[16] Léon Bottou. Online algorithms and stochastic approximations. In David Saad, editor,
Online Learning and Neural Networks. Cambridge University Press, 1998.

143

http://www.jumpgen.com
http://www.mathworks.de/access/helpdesk/help/toolbox/stats/mdscale.html
http://www.mathworks.de/access/helpdesk/help/toolbox/stats/mdscale.html
http://laas.fr/METROSEC
http://tcpreplay.synfin.net/
http://tcpreplay.synfin.net/
http://kdd.ics.uci.edu/databases/kddcup99
http://kdd.ics.uci.edu/databases/kddcup99
http://www.pdos.lcs.mit.edu/p2psim/index.html
http://www.pdos.lcs.mit.edu/p2psim/index.html

[17] Stephen Boyd, Arpita Ghosh, Student Member, Balaji Prabhakar, and Devavrat Shah.
Randomized gossip algorithms. IEEE Transactions on Information Theory, 52:2508–
2530, 2006.

[18] D Brauckhoff, K Salamatian, and M May. A signal processing view on packet sampling
and anomaly detection. IEEE Infocom, Mar 2010.

[19] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: identify-
ing density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, SIGMOD ’00, pages 93–104, New York, NY, USA,
2000. ACM.

[20] B. Briscoe. Tunnelling of Explicit Congestion Notification. RFC 6040 (Proposed Stan-
dard), November 2010.

[21] S. Bryant, C. Filsfils, S. Previdi, and M. Shand. Ip fast reroute using tunnels. Work in
Progress in IETF, 2005.

[22] S. Bryant, M. Shand, and S. Previdi. Ip fast reroute using not-via addresses. draft-bryant-
shand-ipfrr-notvia-addresses-03. txt, 2006.

[23] A. M. Buchanan and A. W. Fitzgibbon. Damped newton algorithms for matrix factoriza-
tion with missing data. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 316–322, 2005.

[24] E. J. CandÃ¨s and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,
98(6), 2010.

[25] E. J. CandÃ¨s and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, 2009.

[26] F. Cantin and G. Leduc. Finding routing shortcuts using an internet coordinate system.
In Proc. of IWSoS 2011, Karlsruhe, Germany, Feb. 2011.

[27] Yang Chen, Xiao Wang, Xiaoxiao Song, Eng Keong Lua, Cong Shi, Xiaohan Zhao,
Beixing Deng, and Xing Li. Phoenix: Towards an accurate, practical and decentralized
network coordinate system. In Proc. IFIP Networking Conference, Aachen, Germany,
May 2009.

[28] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for con-
gestion avoidance in computer networks. Computer Networks and ISDN Systems, 17(1):1
– 14, 1989.

[29] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository at the wide project. In Proc. of
USENIX 2000 Annual Technical Conference: FREENIX Track, pages 263–270, 2000.

[30] Mark Crovella and Balachander Krishnamurthy. Internet Measurement: Infrastructure,
Traffic and Applications. John Wiley & Sons, Inc., New York, NY, USA, 2006.

[31] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordi-
nate system. In Proc. ACM SIGCOMM, Portland, OR, USA, August 2004.

144

[32] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordi-
nate system. In Proc. of SIGCOMM, Portland, OR, USA, August 2004.

[33] Frank Dabek. A Distributed Hash Table. PhD thesis, Massachusetts Institute of Technol-
ogy, November 2005.

[34] Gustavo de Veciana, Takis Konstantopoulos, and Tae-Jin Lee. Stability and performance
analysis of networks supporting elastic services. IEEE/ACM Trans. Netw., 9:2–14, Febru-
ary 2001.

[35] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho. Extracting Hidden Anomalies
using Sketch and non Gaussian Multi-resolution Statistical Detection Procedures. In
Proc. of ACM Workshop on Large-Scale Attack Defense, 2007.

[36] Benoit Donnet, Bamba Gueye, and Mohamed Ali Kaafar. A survey on network coordi-
nates systems, design, and security. IEEE Communication Surveys and Tutorial.

[37] Ibtissam El Khayat, Pierre Geurts, and Guy Leduc. Enhancement of tcp over wired/wire-
less networks with packet loss classifiers inferred by supervised learning. Wirel. Netw.,
16:273–290, February 2010.

[38] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for
unsupervised anomaly detection: Detecting intrusions in unlabeled data. Applications of
Data Mining in Computer Security, 2002.

[39] Martin Ester, Hans-Peter Kriegel, J Sander, and X Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Editors, editor, Proceed-
ings of the Second International Conference on Knowledge Discovery and Data Mining
(KDD-96), volume 96, pages 226–231. AAAI Press, 1996.

[40] Wu-chang Feng, Kang G. Shin, Dilip D. Kandlur, and Debanjan Saha. The blue active
queue management algorithms. IEEE/ACM Transactions on Networking, 10:513–528,
August 2002.

[41] G. Fernandes and P. Owezarski. Automated Classification of Network Traffic Anomalies.
In Proc. of 5th International ICST Conference on Security and Privacy in Communication
Networks, 2009.

[42] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast Re-
covery Algorithm. RFC 3782 (Proposed Standard), April 2004.

[43] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4):397 –413, August 1993.

[44] P. Francois, O. Bonaventure, M. Shand, S. Bryant, and S. Previdi. Loop-free convergence
using ofib. Work in Progress, 2008.

[45] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure. Achieving sub-second igp con-
vergence in large ip networks. ACM SIGCOMM Computer Communication Review,
35(3):35–44, 2005.

145

[46] Michael J. Freedman, Karthik Laskhminarayanan, and David Mazières. OASIS: Anycast
for any service. In POT3rd Symposium on Networked Systems Design and Implementa-
tion, San Jose, CA, May 2006.

[47] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
3rd edition, 1996.

[48] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wetherall. Im-
proving the reliability of internet paths with one-hop source routing. In Proceedings of
OSDI, Berkeley, CA, USA, 2004. USENIX Association.

[49] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between arbitrary
Internet end hosts. In Proc. of the ACM/SIGCOMM Internet Measurement Workshop,
Marseille, France, November 2002.

[50] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong Zhang.
Measurements, analysis, and modeling of bittorrent-like systems. In Proceedings of the
5th ACM SIGCOMM conference on Internet Measurement, IMC ’05, pages 4–4, Berke-
ley, CA, USA, 2005. USENIX Association.

[51] Sun Hanlin, Jin Yuehui, Cui Yidong, Wang Hongbo, and Cheng Shiduan. Improving
fairness of red aided by lightweight flow information. In 2nd IEEE International Con-
ference on Broadband Network Multimedia Technology, 2009. IC-BNMT ’09., pages 335
–339, 2009.

[52] Yihua He, Michalis Faloutsos, Srikanth Krishnamurthy, Bradley Huffaker, Yihua He,
Michalis Faloutsos, Srikanth Krishnamurthy, and Bradley Huffaker. On routing asym-
metry in the Internet. In Proceedings of IEEE Globecom, 2005.

[53] Christian Hennig and Mahmut Kutlukaya. Some thoughts about the design of loss func-
tions. REVSTAT–Statistical Journal, 5(1), 2007.

[54] C.E. Hopps. Analysis of an equal-cost multi-path algorithm. 2000.

[55] N. Hu and P. Steenkiste. Quantifying internet end-to-end route similarity. In Passive and
Active Measurement Conference, volume 2006, page 76. Citeseer, 2006.

[56] Tiansi Hu and Yunsi Fei. Qelar: A machine-learning-based adaptive routing protocol for
energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions
on Mobile Computing, 9(6):796 –809, 2010.

[57] Xiao Huang, Jiangxing Wu, Guibin Sun, and Jing Jing. A new fair active queue man-
agement algorithm. In Future Networks, 2009 International Conference on, pages 191
–195, 2009.

[58] V. Jacobson. Congestion avoidance and control. SIGCOMM Computer Communication
Review, 18:314–329, August 1988.

[59] A. K. Jain. Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Letters,
31(8):651–666, 2010.

146

[60] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A Quantitative Measure
Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems.
Technical report, Digital Equipment Corporation, September 1984.

[61] A. Jayaraj, T. Venkatesh, and C.S.R. Murthy. Loss classification in optical burst switch-
ing networks using machine learning techniques: improving the performance of tcp.
IEEE Journal on Selected Areas in Communications, 26(6):45 –54, 2008.

[62] M. Kaafar, F. Cantin, B. Gueye, and G. Leduc. Detecting triangle inequality violations
for internet coordinate systems. In Proc. of Future Networks 2009 workshop, Dresden,
Germany, June 2009.

[63] Qifa Ke and Takeo Kanade. Robust l1 norm factorization in the presence of outliers
and missing data by alternative convex programming. In Computer Vision and Pattern
Recognition, pages 592–599, 2005.

[64] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: shadow
prices, proportional fairness and stability. In Journal of the Operational Research Soci-
ety, volume 49, 1998.

[65] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. Matrix completion
from a few entries. CoRR, abs/0901.3150, 2009.

[66] A. Krifa, I. Lassoued, and C. Barakat. Emulation platform for network wide traffic
sampling and monitoring. TRAC, 2010.

[67] C. Kruegel and T. Toth. Using decision trees to improve signature-based intrusion de-
tection. In Proc. of the 6th International Workshop on Recent Advances in Intrusion
Detection (RAID), 2003.

[68] Chamil Kulatunga and Gorry Fairhurst. Enforcing layered multicast congestion control
using ecn-nonce. Computer Networks, 54(3):489 – 505, 2010.

[69] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In
Proc. of ACM SIGCOMM, 2004.

[70] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distribu-
tions. In Proc. of ACM SIGCOMM, 2005.

[71] Steven Latré, Wim Van de Meerssche, Stijn Melis, Dimitri Papadimitriou, Filip De Turck,
and Piet Demeester. Automated management of network experiments and user behaviour
emulation on large scale testbed facilities. In Proceedings of the 6th International Con-
ference on Network and Service Management (CNSM 2010), 2010.

[72] J. Ledlie, P. Gardner, and M. I. Seltzer. Network coordinates in the wild. In Proc. of
USENIX NSDI, Cambridge, April 2007.

[73] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In NIPS, pages 556–562. MIT Press, 2001.

147

[74] J. Lee, H. Lee, S. Sohn, J. Ryu, and T. Chung. Effective value of decision tree with
kdd99 intrusion detection datasets for ids. In Proc. of the 10th International Conference
on Advanced Communication Technology, 2008.

[75] S. Lee, Z. Zhang, S. Sahu, and D. Saha. On suitability of Euclidean embedding of
Internet hosts. SIGMETRICS, 34(1):157–168, 2006.

[76] K. Leung and C. Leckie. Unsupervised anomaly detection in network intrusion detection
using clustering. In Proc. of the 28th Australasian Conference on Computer Science,
2005.

[77] Y. Liao, W. Du, P. Geurts, and G. Leduc. Decentralized prediction of end-to-end network
performance classes. In ACM CoNext, Tokyo, Japan, December 2011.

[78] Y. Liao, P. Geurts, and G. Leduc. Network distance prediction based on decentralized
matrix factorization. In Proc. IFIP Networking Conference, Chennai, India, May 2010.

[79] Y. Liao, M. Kaafar, B. Gueye, F. Cantin, P. Geurts, and G. Leduc. Detecting trian-
gle inequality violations in internet coordinate systems by supervised learning - work in
progress. In Proc. of Networking 2009, Aachen, Germany, May 2009.

[80] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization. Neural
Computation, 19:2756–2779, Oct 2007.

[81] E. K. Lua, X. Zhou, J. Crowcroft, and P. V. Mieghem. Scalable multicasting with
network-aware geometric overlay. Comput. Commun., 31(3):464–488, 2008.

[82] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee. Symbiotic relation-
ships in internet routing overlays. In Proceedings of NSDI, pages 467–480, Berkeley,
CA, USA, 2009. USENIX Association.

[83] Yun Mao, Lawrence Saul, and Jonathan M. Smith. IDES: An internet distance estima-
tion service for large networks. IEEE Journal On Selected Areas in Communications,
24(12):2273–2284, December 2006.

[84] J. Moy. OSPF Version 2. RFC 2328, Internet Engineering Task Force, April 1998.

[85] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay networks. In
Proceedings of SIGCOMM, pages 11–18, New York, NY, USA, 2003. ACM.

[86] A. Nakao, L. Peterson, and A. Bavier. Scalable routing overlay networks. SIGOPS Oper.
Syst. Rev., 40(1):49–61, 2006.

[87] Nathan Srebro Nati and Tommi Jaakkola. Weighted low-rank approximations. In Inter-
national Conference on Machine Learning, pages 720–727, 2003.

[88] T. S. E. Ng and H. Zhang. Predicting Internet network distance with coordinates-based
approaches. In Proc. IEEE INFOCOM, New York, NY, USA, June 2002.

[89] T. S. E. Ng and H. Zhang. A network positioning system for the Internet. In Proc. of
USENIX Annual Technical Conference, June 2004.

148

[90] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. Sndlib 1.0 - survivable network
design library. Networks, 55(3):276–286, 2010.

[91] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe. Open Research Issues in Internet
Congestion Control . RFC 6077, February 2011.

[92] Abhinav Pathak, Himabindu Pucha, Ying Zhang, Y. Charlie Hu, and Z. Morley Mao.
A measurement study of internet delay asymmetry. In Proc. of the Passive and Active
Measurement, Cleveland, OH, USA, April 2008.

[93] PlanetLab: An open platform for developing, deploying, and accessing planetary-scale
services, 2002. http://www.planet-lab.org.

[94] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using clus-
tering. In Proc. of ACM CSS Workshop on Data Mining Applied to Security, 2001.

[95] M. Pustisek, I. Humar, and J. Bester. Empirical analysis and modeling of peer-to-
peer traffic flows. In The 14th IEEE Mediterranean Electrotechnical Conference, 2008.
MELECON 2008, pages 169 –175, May 2008.

[96] B. Puype, D. Papadimitriou, G. Das, D. Colle, M. Pickavet, and P. Demeester. Srlg
inference in ospf for improved reconvergence after failures. Towards a Service-Based
Internet, pages 233–234, 2010.

[97] B. Puype, D. Papadimitriou, G. Das, D. Colle, M. Pickavet, and P. Demeester. Ospf
failure reconvergence through srg inference and prediction of link state advertisements.
In Proceedings of the ACM SIGCOMM 2011 conference on SIGCOMM, pages 468–469.
ACM, 2011.

[98] F. Raineri and G. Verticale. Early internet application identification with machine learn-
ing techniques. In First International Conference on Evolving Internet, 2009. INTERNET
’09, pages 60 –64, 2009.

[99] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. In Proc. of ACM SIGCOMM, San Diego, CA,
USA, August 2001.

[100] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Topologically-
aware overlay construction and server selection. In Proc. IEEE INFOCOM, New York,
NY, USA, June 2002.

[101] Ramin Sadre and Boudewijn Haverkort. Changes in the web from 2000 to 2007. In
Managing Large-Scale Service Deployment, Proceedings of the International Workshop
on Distributed Systems: Operations and Management (DSOM), volume 5273 of Lecture
Notes in Computer Science, pages 136–148. Springer Berlin / Heidelberg, 2008.

[102] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman,
J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed internet routing and
transport. IEEE Micro, 19(1):50–59, 1999.

149

http://www.planet-lab.org

[103] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end effects of
internet path selection. SIGCOMM Comput. Commun. Rev., 29(4):289–299, 1999.

[104] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. Tcp congestion
control with a misbehaving receiver. SIGCOMM Comput. Commun. Rev., 29:71–78,
October 1999.

[105] Shai Shalev-Shwartz, Alon Gonen, and Ohad Shamir. Large-Scale Convex Minimization
with a Low-Rank Constraint. In International Conference on Machine Learning, 2011.

[106] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714 (Informational), January
2010.

[107] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud. Misbehaving tcp receivers can
cause internet-wide congestion collapse. In Proceedings of the 12th ACM conference on
Computer and communications security, CCS ’05, pages 383–392, New York, NY, USA,
2005. ACM.

[108] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Daisuke Inoue, Masashi Eto, and Koji
Nakao. A comparative study of unsupervised anomaly detection techniques using honey-
pot data. IEICE Transactions on Information and Systems, E93.D(9):2544–2554, 2010.

[109] D. Sontag, Y. Zhang, A. Phanishayee, D. G. Andersen, and Karger D. Scaling all-pairs
overlay routing. In Proceedings of CoNEXT, Rome, Italy, December 2009.

[110] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Congestion Notification (ECN)
Signaling with Nonces. RFC 3540 (Experimental), June 2003.

[111] GÃ¡bor TakÃ¡cs, IstvÃ¡n PilÃ¡szy, BottyÃ¡n NÃ c©meth, and Domonkos Tikk. Scalable
collaborative filtering approaches for large recommender systems. Journal of Machine
Learning Research, 10:623–656, June 2009.

[112] Liying Tang and Mark Crovella. Virtual landmarks for the Internet. In Proc. of ACM/SIG-
COMM Internet Measurement Conference, Miami, FL, USA, October 2003.

[113] Eric van den Berg, Mariusz A. Fecko, Sunil Samtani, Catalin Lacatus, and Mitesh Patel.
Distributed game-theoretic topology control in cognitive networks. volume 7707, page
77070E. SPIE, 2010.

[114] Vuze Bittorrent. http://www.vuze.com/.

[115] G. Wang, B. Zhang, and T. S. E. Ng. Towards network triangle inequality violation aware
distributed systems. In Proc. the ACM/IMC Conference, pages 175–188, San Diego, CA,
USA, October 2007.

[116] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac New-
bold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental envi-
ronment for distributed systems and networks. In In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation, pages 255–270, 2002.

150

http://www.vuze.com/

[117] B. Wong, A. Slivkins, and E. Sirer. Meridian: A lightweight network location service
without virtual coordinates. In Proc. of ACM SIGCOMM, August 2005.

[118] Rongmei Zhang, Chunqiang Tang, Y. Charlie Hu, Sonia Fahmy, and Xiaojun Lin. Impact
of the inaccuracy of distance prediction algorithms on Internet applications: an analytical
and comparative study. In Proc. of IEEE INFOCOM, Barcelona, Spain, April 2006.

[119] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet Routing Policies and Round-
Trip-Times. In Proc. of the Passive and Active Measurement, Boston, MA, USA, April
2005.

[120] Xiaoyun Zhu, Jie Yu, and J. Doyle. Heavy tails, generalized coding, and optimal web
layout. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1617 –1626 vol.3,
2001.

151

	Introduction
	Adaptive sampling
	Introduction
	Methodology
	Experimental Platform
	Scenario Description

	Scalability
	Timing
	Conclusion

	Cooperative intrusion and attack / anomaly detection
	Introduction
	Methodology
	Detecting Attacks in WIDE and METROSEC real traffic
	Detecting Attacks in KDD99 artificial traffic
	Computational Time and Parallelization

	ISP-Driven Informed Path Selection
	Introduction
	Accuracy
	Stability
	Scalability

	Path availability and coordinate system
	Network Distance Prediction by Decentralized Matrix Factorization
	Evaluation Methodology
	Euclidean Embedding vs. Matrix Factorization
	Impacts of Parameters
	Comparisons with Vivaldi

	Finding routing shortcuts
	Problem Formalization
	Experimentation and evaluation
	Conclusion

	OSPF SRG inference
	Conditional probabilities
	Failure detection and accuracy
	Recovery timing
	Scaling of detection times
	Scalability of the SRG table
	Scalability of multiple failure inference

	Automated Learning of Loop-Free Alternate Paths for Fast Re-Routing
	Introduction
	Related work
	Equal cost multi-paths (ECMP)
	Loop-free alternate (LFA) paths
	Multi-hop repair paths

	Automated learning of Loop-Free Alternates
	Assumptions
	Preliminaries
	Steps and mechanisms
	Router Model
	Cycle-free alternate path computation
	Loop-domain detection using BFS+
	Configuration of path to LFN

	Experimentation
	Environment
	Network topologies
	Experimented techniques
	Experimental results

	Conclusion

	Profile-based accountability
	Introduction
	Related work
	Misbehaving receivers
	Problem statement
	Limited connection set
	Scenario generation environment
	Detecting unresponsive connections
	Penalization of unresponsive connections
	Performance evaluation results
	Conclusions

	Unresponsive senders
	Experimental setup
	Results description

	Conclusions

	Conclusion
	Path availability and coordinate system
	Network Distance Prediction by Decentralized Matrix Factorization
	Introduction
	Related Work
	Network Distance Prediction by Matrix Factorization
	Decentralized Matrix Factorization for Network Distance Prediction
	Extended Matrix Factorization Models
	Conclusions

	Finding routing shortcuts
	Problem Formalization
	Implementation
	Conclusion

